test_processor_auto.py 17.2 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2021 the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import json
Sylvain Gugger's avatar
Sylvain Gugger committed
17
import os
18
import sys
Sylvain Gugger's avatar
Sylvain Gugger committed
19
20
import tempfile
import unittest
21
from pathlib import Path
22
from shutil import copyfile
Sylvain Gugger's avatar
Sylvain Gugger committed
23

24
from huggingface_hub import HfFolder, Repository, create_repo, delete_repo
25
from requests.exceptions import HTTPError
26

27
import transformers
28
29
30
31
32
33
34
35
36
from transformers import (
    CONFIG_MAPPING,
    FEATURE_EXTRACTOR_MAPPING,
    PROCESSOR_MAPPING,
    TOKENIZER_MAPPING,
    AutoConfig,
    AutoFeatureExtractor,
    AutoProcessor,
    AutoTokenizer,
37
38
    BertTokenizer,
    ProcessorMixin,
39
40
41
42
    Wav2Vec2Config,
    Wav2Vec2FeatureExtractor,
    Wav2Vec2Processor,
)
43
from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test
44
from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE
45
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available
Sylvain Gugger's avatar
Sylvain Gugger committed
46
47


Yih-Dar's avatar
Yih-Dar committed
48
sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils"))
49

50
from test_module.custom_configuration import CustomConfig  # noqa E402
51
52
53
54
55
from test_module.custom_feature_extraction import CustomFeatureExtractor  # noqa E402
from test_module.custom_processing import CustomProcessor  # noqa E402
from test_module.custom_tokenization import CustomTokenizer  # noqa E402


Yih-Dar's avatar
Yih-Dar committed
56
57
58
SAMPLE_PROCESSOR_CONFIG = get_tests_dir("fixtures/dummy_feature_extractor_config.json")
SAMPLE_VOCAB = get_tests_dir("fixtures/vocab.json")
SAMPLE_PROCESSOR_CONFIG_DIR = get_tests_dir("fixtures")
59

Sylvain Gugger's avatar
Sylvain Gugger committed
60
61

class AutoFeatureExtractorTest(unittest.TestCase):
62
63
    vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"]

64
65
66
    def setUp(self):
        transformers.dynamic_module_utils.TIME_OUT_REMOTE_CODE = 0

Sylvain Gugger's avatar
Sylvain Gugger committed
67
68
69
70
    def test_processor_from_model_shortcut(self):
        processor = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h")
        self.assertIsInstance(processor, Wav2Vec2Processor)

71
    def test_processor_from_local_directory_from_repo(self):
Sylvain Gugger's avatar
Sylvain Gugger committed
72
73
74
75
76
77
78
79
80
81
82
        with tempfile.TemporaryDirectory() as tmpdirname:
            model_config = Wav2Vec2Config()
            processor = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h")

            # save in new folder
            model_config.save_pretrained(tmpdirname)
            processor.save_pretrained(tmpdirname)

            processor = AutoProcessor.from_pretrained(tmpdirname)

        self.assertIsInstance(processor, Wav2Vec2Processor)
83
84
85
86
87
88
89
90
91
92

    def test_processor_from_local_directory_from_extractor_config(self):
        with tempfile.TemporaryDirectory() as tmpdirname:
            # copy relevant files
            copyfile(SAMPLE_PROCESSOR_CONFIG, os.path.join(tmpdirname, FEATURE_EXTRACTOR_NAME))
            copyfile(SAMPLE_VOCAB, os.path.join(tmpdirname, "vocab.json"))

            processor = AutoProcessor.from_pretrained(tmpdirname)

        self.assertIsInstance(processor, Wav2Vec2Processor)
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

    def test_processor_from_feat_extr_processor_class(self):
        with tempfile.TemporaryDirectory() as tmpdirname:
            feature_extractor = Wav2Vec2FeatureExtractor()
            tokenizer = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h")

            processor = Wav2Vec2Processor(feature_extractor, tokenizer)

            # save in new folder
            processor.save_pretrained(tmpdirname)

            # drop `processor_class` in tokenizer
            with open(os.path.join(tmpdirname, TOKENIZER_CONFIG_FILE), "r") as f:
                config_dict = json.load(f)
                config_dict.pop("processor_class")

            with open(os.path.join(tmpdirname, TOKENIZER_CONFIG_FILE), "w") as f:
                f.write(json.dumps(config_dict))

            processor = AutoProcessor.from_pretrained(tmpdirname)

        self.assertIsInstance(processor, Wav2Vec2Processor)

    def test_processor_from_tokenizer_processor_class(self):
        with tempfile.TemporaryDirectory() as tmpdirname:
            feature_extractor = Wav2Vec2FeatureExtractor()
            tokenizer = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h")

            processor = Wav2Vec2Processor(feature_extractor, tokenizer)

            # save in new folder
            processor.save_pretrained(tmpdirname)

            # drop `processor_class` in feature extractor
            with open(os.path.join(tmpdirname, FEATURE_EXTRACTOR_NAME), "r") as f:
                config_dict = json.load(f)
                config_dict.pop("processor_class")

            with open(os.path.join(tmpdirname, FEATURE_EXTRACTOR_NAME), "w") as f:
                f.write(json.dumps(config_dict))

            processor = AutoProcessor.from_pretrained(tmpdirname)

        self.assertIsInstance(processor, Wav2Vec2Processor)

    def test_processor_from_local_directory_from_model_config(self):
        with tempfile.TemporaryDirectory() as tmpdirname:
            model_config = Wav2Vec2Config(processor_class="Wav2Vec2Processor")
            model_config.save_pretrained(tmpdirname)
            # copy relevant files
            copyfile(SAMPLE_VOCAB, os.path.join(tmpdirname, "vocab.json"))
            # create emtpy sample processor
            with open(os.path.join(tmpdirname, FEATURE_EXTRACTOR_NAME), "w") as f:
                f.write("{}")

            processor = AutoProcessor.from_pretrained(tmpdirname)

        self.assertIsInstance(processor, Wav2Vec2Processor)
151
152

    def test_from_pretrained_dynamic_processor(self):
153
154
155
156
157
158
159
160
161
        # If remote code is not set, we will time out when asking whether to load the model.
        with self.assertRaises(ValueError):
            processor = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor")
        # If remote code is disabled, we can't load this config.
        with self.assertRaises(ValueError):
            processor = AutoProcessor.from_pretrained(
                "hf-internal-testing/test_dynamic_processor", trust_remote_code=False
            )

162
163
164
165
166
167
168
169
170
171
172
173
174
175
        processor = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor", trust_remote_code=True)
        self.assertTrue(processor.special_attribute_present)
        self.assertEqual(processor.__class__.__name__, "NewProcessor")

        feature_extractor = processor.feature_extractor
        self.assertTrue(feature_extractor.special_attribute_present)
        self.assertEqual(feature_extractor.__class__.__name__, "NewFeatureExtractor")

        tokenizer = processor.tokenizer
        self.assertTrue(tokenizer.special_attribute_present)
        if is_tokenizers_available():
            self.assertEqual(tokenizer.__class__.__name__, "NewTokenizerFast")

            # Test we can also load the slow version
176
            new_processor = AutoProcessor.from_pretrained(
177
178
                "hf-internal-testing/test_dynamic_processor", trust_remote_code=True, use_fast=False
            )
179
180
181
            new_tokenizer = new_processor.tokenizer
            self.assertTrue(new_tokenizer.special_attribute_present)
            self.assertEqual(new_tokenizer.__class__.__name__, "NewTokenizer")
182
183
184
        else:
            self.assertEqual(tokenizer.__class__.__name__, "NewTokenizer")

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
    def test_new_processor_registration(self):
        try:
            AutoConfig.register("custom", CustomConfig)
            AutoFeatureExtractor.register(CustomConfig, CustomFeatureExtractor)
            AutoTokenizer.register(CustomConfig, slow_tokenizer_class=CustomTokenizer)
            AutoProcessor.register(CustomConfig, CustomProcessor)
            # Trying to register something existing in the Transformers library will raise an error
            with self.assertRaises(ValueError):
                AutoProcessor.register(Wav2Vec2Config, Wav2Vec2Processor)

            # Now that the config is registered, it can be used as any other config with the auto-API
            feature_extractor = CustomFeatureExtractor.from_pretrained(SAMPLE_PROCESSOR_CONFIG_DIR)

            with tempfile.TemporaryDirectory() as tmp_dir:
                vocab_file = os.path.join(tmp_dir, "vocab.txt")
                with open(vocab_file, "w", encoding="utf-8") as vocab_writer:
                    vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens]))
                tokenizer = CustomTokenizer(vocab_file)

            processor = CustomProcessor(feature_extractor, tokenizer)

            with tempfile.TemporaryDirectory() as tmp_dir:
                processor.save_pretrained(tmp_dir)
                new_processor = AutoProcessor.from_pretrained(tmp_dir)
                self.assertIsInstance(new_processor, CustomProcessor)

        finally:
            if "custom" in CONFIG_MAPPING._extra_content:
                del CONFIG_MAPPING._extra_content["custom"]
            if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
                del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
            if CustomConfig in TOKENIZER_MAPPING._extra_content:
                del TOKENIZER_MAPPING._extra_content[CustomConfig]
            if CustomConfig in PROCESSOR_MAPPING._extra_content:
                del PROCESSOR_MAPPING._extra_content[CustomConfig]

221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
    def test_from_pretrained_dynamic_processor_conflict(self):
        class NewFeatureExtractor(Wav2Vec2FeatureExtractor):
            special_attribute_present = False

        class NewTokenizer(BertTokenizer):
            special_attribute_present = False

        class NewProcessor(ProcessorMixin):
            feature_extractor_class = "AutoFeatureExtractor"
            tokenizer_class = "AutoTokenizer"
            special_attribute_present = False

        try:
            AutoConfig.register("custom", CustomConfig)
            AutoFeatureExtractor.register(CustomConfig, NewFeatureExtractor)
            AutoTokenizer.register(CustomConfig, slow_tokenizer_class=NewTokenizer)
            AutoProcessor.register(CustomConfig, NewProcessor)
            # If remote code is not set, the default is to use local classes.
            processor = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor")
            self.assertEqual(processor.__class__.__name__, "NewProcessor")
            self.assertFalse(processor.special_attribute_present)
            self.assertFalse(processor.feature_extractor.special_attribute_present)
            self.assertFalse(processor.tokenizer.special_attribute_present)

            # If remote code is disabled, we load the local ones.
            processor = AutoProcessor.from_pretrained(
                "hf-internal-testing/test_dynamic_processor", trust_remote_code=False
            )
            self.assertEqual(processor.__class__.__name__, "NewProcessor")
            self.assertFalse(processor.special_attribute_present)
            self.assertFalse(processor.feature_extractor.special_attribute_present)
            self.assertFalse(processor.tokenizer.special_attribute_present)

            # If remote is enabled, we load from the Hub.
            processor = AutoProcessor.from_pretrained(
                "hf-internal-testing/test_dynamic_processor", trust_remote_code=True
            )
            self.assertEqual(processor.__class__.__name__, "NewProcessor")
            self.assertTrue(processor.special_attribute_present)
            self.assertTrue(processor.feature_extractor.special_attribute_present)
            self.assertTrue(processor.tokenizer.special_attribute_present)

        finally:
            if "custom" in CONFIG_MAPPING._extra_content:
                del CONFIG_MAPPING._extra_content["custom"]
            if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
                del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
            if CustomConfig in TOKENIZER_MAPPING._extra_content:
                del TOKENIZER_MAPPING._extra_content[CustomConfig]
            if CustomConfig in PROCESSOR_MAPPING._extra_content:
                del PROCESSOR_MAPPING._extra_content[CustomConfig]

273
274
275
276
    def test_auto_processor_creates_tokenizer(self):
        processor = AutoProcessor.from_pretrained("hf-internal-testing/tiny-random-bert")
        self.assertEqual(processor.__class__.__name__, "BertTokenizerFast")

277
    def test_auto_processor_creates_image_processor(self):
278
        processor = AutoProcessor.from_pretrained("hf-internal-testing/tiny-random-convnext")
279
        self.assertEqual(processor.__class__.__name__, "ConvNextImageProcessor")
280

281
282
283
284
285
286
287

@is_staging_test
class ProcessorPushToHubTester(unittest.TestCase):
    vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"]

    @classmethod
    def setUpClass(cls):
288
289
        cls._token = TOKEN
        HfFolder.save_token(TOKEN)
290
291
292

    @classmethod
    def tearDownClass(cls):
293
        try:
294
            delete_repo(token=cls._token, repo_id="test-processor")
295
296
297
298
        except HTTPError:
            pass

        try:
299
            delete_repo(token=cls._token, repo_id="valid_org/test-processor-org")
300
301
302
        except HTTPError:
            pass

303
        try:
304
            delete_repo(token=cls._token, repo_id="test-dynamic-processor")
305
306
307
        except HTTPError:
            pass

308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
    def test_push_to_hub(self):
        processor = Wav2Vec2Processor.from_pretrained(SAMPLE_PROCESSOR_CONFIG_DIR)
        with tempfile.TemporaryDirectory() as tmp_dir:
            processor.save_pretrained(
                os.path.join(tmp_dir, "test-processor"), push_to_hub=True, use_auth_token=self._token
            )

            new_processor = Wav2Vec2Processor.from_pretrained(f"{USER}/test-processor")
            for k, v in processor.feature_extractor.__dict__.items():
                self.assertEqual(v, getattr(new_processor.feature_extractor, k))
            self.assertDictEqual(new_processor.tokenizer.get_vocab(), processor.tokenizer.get_vocab())

    def test_push_to_hub_in_organization(self):
        processor = Wav2Vec2Processor.from_pretrained(SAMPLE_PROCESSOR_CONFIG_DIR)

        with tempfile.TemporaryDirectory() as tmp_dir:
            processor.save_pretrained(
                os.path.join(tmp_dir, "test-processor-org"),
                push_to_hub=True,
                use_auth_token=self._token,
                organization="valid_org",
            )

            new_processor = Wav2Vec2Processor.from_pretrained("valid_org/test-processor-org")
            for k, v in processor.feature_extractor.__dict__.items():
                self.assertEqual(v, getattr(new_processor.feature_extractor, k))
            self.assertDictEqual(new_processor.tokenizer.get_vocab(), processor.tokenizer.get_vocab())

336
337
338
339
340
    def test_push_to_hub_dynamic_processor(self):
        CustomFeatureExtractor.register_for_auto_class()
        CustomTokenizer.register_for_auto_class()
        CustomProcessor.register_for_auto_class()

341
        feature_extractor = CustomFeatureExtractor.from_pretrained(SAMPLE_PROCESSOR_CONFIG_DIR)
342
343
344
345
346
347
348
349
350
351

        with tempfile.TemporaryDirectory() as tmp_dir:
            vocab_file = os.path.join(tmp_dir, "vocab.txt")
            with open(vocab_file, "w", encoding="utf-8") as vocab_writer:
                vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens]))
            tokenizer = CustomTokenizer(vocab_file)

        processor = CustomProcessor(feature_extractor, tokenizer)

        with tempfile.TemporaryDirectory() as tmp_dir:
352
353
            create_repo(f"{USER}/test-dynamic-processor", token=self._token)
            repo = Repository(tmp_dir, clone_from=f"{USER}/test-dynamic-processor", token=self._token)
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
            processor.save_pretrained(tmp_dir)

            # This has added the proper auto_map field to the feature extractor config
            self.assertDictEqual(
                processor.feature_extractor.auto_map,
                {
                    "AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor",
                    "AutoProcessor": "custom_processing.CustomProcessor",
                },
            )

            # This has added the proper auto_map field to the tokenizer config
            with open(os.path.join(tmp_dir, "tokenizer_config.json")) as f:
                tokenizer_config = json.load(f)
            self.assertDictEqual(
                tokenizer_config["auto_map"],
                {
                    "AutoTokenizer": ["custom_tokenization.CustomTokenizer", None],
                    "AutoProcessor": "custom_processing.CustomProcessor",
                },
            )

            # The code has been copied from fixtures
            self.assertTrue(os.path.isfile(os.path.join(tmp_dir, "custom_feature_extraction.py")))
            self.assertTrue(os.path.isfile(os.path.join(tmp_dir, "custom_tokenization.py")))
            self.assertTrue(os.path.isfile(os.path.join(tmp_dir, "custom_processing.py")))

            repo.push_to_hub()

        new_processor = AutoProcessor.from_pretrained(f"{USER}/test-dynamic-processor", trust_remote_code=True)
        # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module
        self.assertEqual(new_processor.__class__.__name__, "CustomProcessor")