test_processor_auto.py 13.7 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2021 the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import json
Sylvain Gugger's avatar
Sylvain Gugger committed
17
import os
18
import sys
Sylvain Gugger's avatar
Sylvain Gugger committed
19
20
import tempfile
import unittest
21
from pathlib import Path
22
from shutil import copyfile
Sylvain Gugger's avatar
Sylvain Gugger committed
23

24
from huggingface_hub import HfFolder, Repository, delete_repo, set_access_token
25
from requests.exceptions import HTTPError
26
27
28
29
30
31
32
33
34
35
36
37
38
from transformers import (
    CONFIG_MAPPING,
    FEATURE_EXTRACTOR_MAPPING,
    PROCESSOR_MAPPING,
    TOKENIZER_MAPPING,
    AutoConfig,
    AutoFeatureExtractor,
    AutoProcessor,
    AutoTokenizer,
    Wav2Vec2Config,
    Wav2Vec2FeatureExtractor,
    Wav2Vec2Processor,
)
39
from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test
40
from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE
41
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available
Sylvain Gugger's avatar
Sylvain Gugger committed
42
43


Yih-Dar's avatar
Yih-Dar committed
44
sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils"))
45

46
from test_module.custom_configuration import CustomConfig  # noqa E402
47
48
49
50
51
from test_module.custom_feature_extraction import CustomFeatureExtractor  # noqa E402
from test_module.custom_processing import CustomProcessor  # noqa E402
from test_module.custom_tokenization import CustomTokenizer  # noqa E402


Yih-Dar's avatar
Yih-Dar committed
52
53
54
SAMPLE_PROCESSOR_CONFIG = get_tests_dir("fixtures/dummy_feature_extractor_config.json")
SAMPLE_VOCAB = get_tests_dir("fixtures/vocab.json")
SAMPLE_PROCESSOR_CONFIG_DIR = get_tests_dir("fixtures")
55

Sylvain Gugger's avatar
Sylvain Gugger committed
56
57

class AutoFeatureExtractorTest(unittest.TestCase):
58
59
    vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"]

Sylvain Gugger's avatar
Sylvain Gugger committed
60
61
62
63
    def test_processor_from_model_shortcut(self):
        processor = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h")
        self.assertIsInstance(processor, Wav2Vec2Processor)

64
    def test_processor_from_local_directory_from_repo(self):
Sylvain Gugger's avatar
Sylvain Gugger committed
65
66
67
68
69
70
71
72
73
74
75
        with tempfile.TemporaryDirectory() as tmpdirname:
            model_config = Wav2Vec2Config()
            processor = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h")

            # save in new folder
            model_config.save_pretrained(tmpdirname)
            processor.save_pretrained(tmpdirname)

            processor = AutoProcessor.from_pretrained(tmpdirname)

        self.assertIsInstance(processor, Wav2Vec2Processor)
76
77
78
79
80
81
82
83
84
85

    def test_processor_from_local_directory_from_extractor_config(self):
        with tempfile.TemporaryDirectory() as tmpdirname:
            # copy relevant files
            copyfile(SAMPLE_PROCESSOR_CONFIG, os.path.join(tmpdirname, FEATURE_EXTRACTOR_NAME))
            copyfile(SAMPLE_VOCAB, os.path.join(tmpdirname, "vocab.json"))

            processor = AutoProcessor.from_pretrained(tmpdirname)

        self.assertIsInstance(processor, Wav2Vec2Processor)
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

    def test_processor_from_feat_extr_processor_class(self):
        with tempfile.TemporaryDirectory() as tmpdirname:
            feature_extractor = Wav2Vec2FeatureExtractor()
            tokenizer = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h")

            processor = Wav2Vec2Processor(feature_extractor, tokenizer)

            # save in new folder
            processor.save_pretrained(tmpdirname)

            # drop `processor_class` in tokenizer
            with open(os.path.join(tmpdirname, TOKENIZER_CONFIG_FILE), "r") as f:
                config_dict = json.load(f)
                config_dict.pop("processor_class")

            with open(os.path.join(tmpdirname, TOKENIZER_CONFIG_FILE), "w") as f:
                f.write(json.dumps(config_dict))

            processor = AutoProcessor.from_pretrained(tmpdirname)

        self.assertIsInstance(processor, Wav2Vec2Processor)

    def test_processor_from_tokenizer_processor_class(self):
        with tempfile.TemporaryDirectory() as tmpdirname:
            feature_extractor = Wav2Vec2FeatureExtractor()
            tokenizer = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h")

            processor = Wav2Vec2Processor(feature_extractor, tokenizer)

            # save in new folder
            processor.save_pretrained(tmpdirname)

            # drop `processor_class` in feature extractor
            with open(os.path.join(tmpdirname, FEATURE_EXTRACTOR_NAME), "r") as f:
                config_dict = json.load(f)
                config_dict.pop("processor_class")

            with open(os.path.join(tmpdirname, FEATURE_EXTRACTOR_NAME), "w") as f:
                f.write(json.dumps(config_dict))

            processor = AutoProcessor.from_pretrained(tmpdirname)

        self.assertIsInstance(processor, Wav2Vec2Processor)

    def test_processor_from_local_directory_from_model_config(self):
        with tempfile.TemporaryDirectory() as tmpdirname:
            model_config = Wav2Vec2Config(processor_class="Wav2Vec2Processor")
            model_config.save_pretrained(tmpdirname)
            # copy relevant files
            copyfile(SAMPLE_VOCAB, os.path.join(tmpdirname, "vocab.json"))
            # create emtpy sample processor
            with open(os.path.join(tmpdirname, FEATURE_EXTRACTOR_NAME), "w") as f:
                f.write("{}")

            processor = AutoProcessor.from_pretrained(tmpdirname)

        self.assertIsInstance(processor, Wav2Vec2Processor)
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

    def test_from_pretrained_dynamic_processor(self):
        processor = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor", trust_remote_code=True)
        self.assertTrue(processor.special_attribute_present)
        self.assertEqual(processor.__class__.__name__, "NewProcessor")

        feature_extractor = processor.feature_extractor
        self.assertTrue(feature_extractor.special_attribute_present)
        self.assertEqual(feature_extractor.__class__.__name__, "NewFeatureExtractor")

        tokenizer = processor.tokenizer
        self.assertTrue(tokenizer.special_attribute_present)
        if is_tokenizers_available():
            self.assertEqual(tokenizer.__class__.__name__, "NewTokenizerFast")

            # Test we can also load the slow version
            processor = AutoProcessor.from_pretrained(
                "hf-internal-testing/test_dynamic_processor", trust_remote_code=True, use_fast=False
            )
            tokenizer = processor.tokenizer
            self.assertTrue(tokenizer.special_attribute_present)
            self.assertEqual(tokenizer.__class__.__name__, "NewTokenizer")
        else:
            self.assertEqual(tokenizer.__class__.__name__, "NewTokenizer")

169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
    def test_new_processor_registration(self):
        try:
            AutoConfig.register("custom", CustomConfig)
            AutoFeatureExtractor.register(CustomConfig, CustomFeatureExtractor)
            AutoTokenizer.register(CustomConfig, slow_tokenizer_class=CustomTokenizer)
            AutoProcessor.register(CustomConfig, CustomProcessor)
            # Trying to register something existing in the Transformers library will raise an error
            with self.assertRaises(ValueError):
                AutoProcessor.register(Wav2Vec2Config, Wav2Vec2Processor)

            # Now that the config is registered, it can be used as any other config with the auto-API
            feature_extractor = CustomFeatureExtractor.from_pretrained(SAMPLE_PROCESSOR_CONFIG_DIR)

            with tempfile.TemporaryDirectory() as tmp_dir:
                vocab_file = os.path.join(tmp_dir, "vocab.txt")
                with open(vocab_file, "w", encoding="utf-8") as vocab_writer:
                    vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens]))
                tokenizer = CustomTokenizer(vocab_file)

            processor = CustomProcessor(feature_extractor, tokenizer)

            with tempfile.TemporaryDirectory() as tmp_dir:
                processor.save_pretrained(tmp_dir)
                new_processor = AutoProcessor.from_pretrained(tmp_dir)
                self.assertIsInstance(new_processor, CustomProcessor)

        finally:
            if "custom" in CONFIG_MAPPING._extra_content:
                del CONFIG_MAPPING._extra_content["custom"]
            if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
                del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
            if CustomConfig in TOKENIZER_MAPPING._extra_content:
                del TOKENIZER_MAPPING._extra_content[CustomConfig]
            if CustomConfig in PROCESSOR_MAPPING._extra_content:
                del PROCESSOR_MAPPING._extra_content[CustomConfig]

205
206
207
208
209
210
211
212
    def test_auto_processor_creates_tokenizer(self):
        processor = AutoProcessor.from_pretrained("hf-internal-testing/tiny-random-bert")
        self.assertEqual(processor.__class__.__name__, "BertTokenizerFast")

    def test_auto_processor_creates_feature_extractor(self):
        processor = AutoProcessor.from_pretrained("hf-internal-testing/tiny-random-convnext")
        self.assertEqual(processor.__class__.__name__, "ConvNextFeatureExtractor")

213
214
215
216
217
218
219

@is_staging_test
class ProcessorPushToHubTester(unittest.TestCase):
    vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"]

    @classmethod
    def setUpClass(cls):
220
221
222
        cls._token = TOKEN
        set_access_token(TOKEN)
        HfFolder.save_token(TOKEN)
223
224
225

    @classmethod
    def tearDownClass(cls):
226
        try:
227
            delete_repo(token=cls._token, repo_id="test-processor")
228
229
230
231
        except HTTPError:
            pass

        try:
232
            delete_repo(token=cls._token, repo_id="valid_org/test-processor-org")
233
234
235
        except HTTPError:
            pass

236
        try:
237
            delete_repo(token=cls._token, repo_id="test-dynamic-processor")
238
239
240
        except HTTPError:
            pass

241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
    def test_push_to_hub(self):
        processor = Wav2Vec2Processor.from_pretrained(SAMPLE_PROCESSOR_CONFIG_DIR)
        with tempfile.TemporaryDirectory() as tmp_dir:
            processor.save_pretrained(
                os.path.join(tmp_dir, "test-processor"), push_to_hub=True, use_auth_token=self._token
            )

            new_processor = Wav2Vec2Processor.from_pretrained(f"{USER}/test-processor")
            for k, v in processor.feature_extractor.__dict__.items():
                self.assertEqual(v, getattr(new_processor.feature_extractor, k))
            self.assertDictEqual(new_processor.tokenizer.get_vocab(), processor.tokenizer.get_vocab())

    def test_push_to_hub_in_organization(self):
        processor = Wav2Vec2Processor.from_pretrained(SAMPLE_PROCESSOR_CONFIG_DIR)

        with tempfile.TemporaryDirectory() as tmp_dir:
            processor.save_pretrained(
                os.path.join(tmp_dir, "test-processor-org"),
                push_to_hub=True,
                use_auth_token=self._token,
                organization="valid_org",
            )

            new_processor = Wav2Vec2Processor.from_pretrained("valid_org/test-processor-org")
            for k, v in processor.feature_extractor.__dict__.items():
                self.assertEqual(v, getattr(new_processor.feature_extractor, k))
            self.assertDictEqual(new_processor.tokenizer.get_vocab(), processor.tokenizer.get_vocab())

269
270
271
272
273
    def test_push_to_hub_dynamic_processor(self):
        CustomFeatureExtractor.register_for_auto_class()
        CustomTokenizer.register_for_auto_class()
        CustomProcessor.register_for_auto_class()

274
        feature_extractor = CustomFeatureExtractor.from_pretrained(SAMPLE_PROCESSOR_CONFIG_DIR)
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317

        with tempfile.TemporaryDirectory() as tmp_dir:
            vocab_file = os.path.join(tmp_dir, "vocab.txt")
            with open(vocab_file, "w", encoding="utf-8") as vocab_writer:
                vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens]))
            tokenizer = CustomTokenizer(vocab_file)

        processor = CustomProcessor(feature_extractor, tokenizer)

        with tempfile.TemporaryDirectory() as tmp_dir:
            repo = Repository(tmp_dir, clone_from=f"{USER}/test-dynamic-processor", use_auth_token=self._token)
            processor.save_pretrained(tmp_dir)

            # This has added the proper auto_map field to the feature extractor config
            self.assertDictEqual(
                processor.feature_extractor.auto_map,
                {
                    "AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor",
                    "AutoProcessor": "custom_processing.CustomProcessor",
                },
            )

            # This has added the proper auto_map field to the tokenizer config
            with open(os.path.join(tmp_dir, "tokenizer_config.json")) as f:
                tokenizer_config = json.load(f)
            self.assertDictEqual(
                tokenizer_config["auto_map"],
                {
                    "AutoTokenizer": ["custom_tokenization.CustomTokenizer", None],
                    "AutoProcessor": "custom_processing.CustomProcessor",
                },
            )

            # The code has been copied from fixtures
            self.assertTrue(os.path.isfile(os.path.join(tmp_dir, "custom_feature_extraction.py")))
            self.assertTrue(os.path.isfile(os.path.join(tmp_dir, "custom_tokenization.py")))
            self.assertTrue(os.path.isfile(os.path.join(tmp_dir, "custom_processing.py")))

            repo.push_to_hub()

        new_processor = AutoProcessor.from_pretrained(f"{USER}/test-dynamic-processor", trust_remote_code=True)
        # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module
        self.assertEqual(new_processor.__class__.__name__, "CustomProcessor")