run_tf_ner.py 10.9 KB
Newer Older
1
#!/usr/bin/env python
2
# coding=utf-8
Julien Plu's avatar
Julien Plu committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Fine-tuning the library models for named entity recognition."""


import logging
Aymeric Augustin's avatar
Aymeric Augustin committed
20
import os
Julien Plu's avatar
Julien Plu committed
21
from dataclasses import dataclass, field
22
from importlib import import_module
Julien Plu's avatar
Julien Plu committed
23
from typing import Dict, List, Optional, Tuple
Aymeric Augustin's avatar
Aymeric Augustin committed
24

25
import numpy as np
Julien Plu's avatar
Julien Plu committed
26
from seqeval.metrics import classification_report, f1_score, precision_score, recall_score
27

Aymeric Augustin's avatar
Aymeric Augustin committed
28
from transformers import (
29
30
    AutoConfig,
    AutoTokenizer,
Julien Plu's avatar
Julien Plu committed
31
32
    EvalPrediction,
    HfArgumentParser,
33
    TFAutoModelForTokenClassification,
Julien Plu's avatar
Julien Plu committed
34
35
    TFTrainer,
    TFTrainingArguments,
Aymeric Augustin's avatar
Aymeric Augustin committed
36
)
37
from transformers.utils import logging as hf_logging
38
from utils_ner import Split, TFTokenClassificationDataset, TokenClassificationTask
39
40


41
42
43
44
45
hf_logging.set_verbosity_info()
hf_logging.enable_default_handler()
hf_logging.enable_explicit_format()


Julien Plu's avatar
Julien Plu committed
46
logger = logging.getLogger(__name__)
47
48


Julien Plu's avatar
Julien Plu committed
49
50
51
52
53
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """
54

Julien Plu's avatar
Julien Plu committed
55
56
    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
57
    )
Julien Plu's avatar
Julien Plu committed
58
59
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
60
    )
61
62
63
    task_type: Optional[str] = field(
        default="NER", metadata={"help": "Task type to fine tune in training (e.g. NER, POS, etc)"}
    )
Julien Plu's avatar
Julien Plu committed
64
65
66
67
68
69
70
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    use_fast: bool = field(default=False, metadata={"help": "Set this flag to use fast tokenization."})
    # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
    # or just modify its tokenizer_config.json.
    cache_dir: Optional[str] = field(
71
72
        default=None,
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
73
    )
74
75


Julien Plu's avatar
Julien Plu committed
76
77
78
79
80
@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """
81

Julien Plu's avatar
Julien Plu committed
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
    data_dir: str = field(
        metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."}
    )
    labels: Optional[str] = field(
        metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."}
    )
    max_seq_length: int = field(
        default=128,
        metadata={
            "help": "The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded."
        },
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
    )
98
99


Julien Plu's avatar
Julien Plu committed
100
101
102
103
104
105
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.
    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments))
    model_args, data_args, training_args = parser.parse_args_into_dataclasses()
106

107
    if (
Julien Plu's avatar
Julien Plu committed
108
109
110
111
        os.path.exists(training_args.output_dir)
        and os.listdir(training_args.output_dir)
        and training_args.do_train
        and not training_args.overwrite_output_dir
112
    ):
113
        raise ValueError(
Julien Plu's avatar
Julien Plu committed
114
            f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome."
115
        )
116

117
118
119
120
121
122
123
124
125
126
127
    module = import_module("tasks")

    try:
        token_classification_task_clazz = getattr(module, model_args.task_type)
        token_classification_task: TokenClassificationTask = token_classification_task_clazz()
    except AttributeError:
        raise ValueError(
            f"Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. "
            f"Available tasks classes are: {TokenClassificationTask.__subclasses__()}"
        )

Julien Plu's avatar
Julien Plu committed
128
129
130
131
132
    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
133
    )
Julien Plu's avatar
Julien Plu committed
134
    logger.info(
135
136
137
        "n_replicas: %s, distributed training: %s, 16-bits training: %s",
        training_args.n_replicas,
        bool(training_args.n_replicas > 1),
Julien Plu's avatar
Julien Plu committed
138
139
140
        training_args.fp16,
    )
    logger.info("Training/evaluation parameters %s", training_args)
141

Julien Plu's avatar
Julien Plu committed
142
    # Prepare Token Classification task
143
    labels = token_classification_task.get_labels(data_args.labels)
Julien Plu's avatar
Julien Plu committed
144
    label_map: Dict[int, str] = {i: label for i, label in enumerate(labels)}
Julien Plu's avatar
Julien Plu committed
145
    num_labels = len(labels)
Julien Plu's avatar
Julien Plu committed
146
147
148
149
150
151
152

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.

153
    config = AutoConfig.from_pretrained(
Julien Plu's avatar
Julien Plu committed
154
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
155
        num_labels=num_labels,
Julien Plu's avatar
Julien Plu committed
156
157
158
159
160
161
162
163
        id2label=label_map,
        label2id={label: i for i, label in enumerate(labels)},
        cache_dir=model_args.cache_dir,
    )
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        use_fast=model_args.use_fast,
164
    )
165

Julien Plu's avatar
Julien Plu committed
166
167
168
169
170
171
    with training_args.strategy.scope():
        model = TFAutoModelForTokenClassification.from_pretrained(
            model_args.model_name_or_path,
            from_pt=bool(".bin" in model_args.model_name_or_path),
            config=config,
            cache_dir=model_args.cache_dir,
172
        )
173

Julien Plu's avatar
Julien Plu committed
174
175
    # Get datasets
    train_dataset = (
176
177
        TFTokenClassificationDataset(
            token_classification_task=token_classification_task,
Julien Plu's avatar
Julien Plu committed
178
179
180
181
182
183
184
            data_dir=data_args.data_dir,
            tokenizer=tokenizer,
            labels=labels,
            model_type=config.model_type,
            max_seq_length=data_args.max_seq_length,
            overwrite_cache=data_args.overwrite_cache,
            mode=Split.train,
185
        )
Julien Plu's avatar
Julien Plu committed
186
187
188
189
        if training_args.do_train
        else None
    )
    eval_dataset = (
190
191
        TFTokenClassificationDataset(
            token_classification_task=token_classification_task,
Julien Plu's avatar
Julien Plu committed
192
193
194
195
196
197
198
            data_dir=data_args.data_dir,
            tokenizer=tokenizer,
            labels=labels,
            model_type=config.model_type,
            max_seq_length=data_args.max_seq_length,
            overwrite_cache=data_args.overwrite_cache,
            mode=Split.dev,
199
        )
Julien Plu's avatar
Julien Plu committed
200
201
202
        if training_args.do_eval
        else None
    )
203

Julien Plu's avatar
Julien Plu committed
204
205
206
207
208
209
210
211
    def align_predictions(predictions: np.ndarray, label_ids: np.ndarray) -> Tuple[List[int], List[int]]:
        preds = np.argmax(predictions, axis=2)
        batch_size, seq_len = preds.shape
        out_label_list = [[] for _ in range(batch_size)]
        preds_list = [[] for _ in range(batch_size)]

        for i in range(batch_size):
            for j in range(seq_len):
212
                if label_ids[i, j] != -100:
Julien Plu's avatar
Julien Plu committed
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
                    out_label_list[i].append(label_map[label_ids[i][j]])
                    preds_list[i].append(label_map[preds[i][j]])

        return preds_list, out_label_list

    def compute_metrics(p: EvalPrediction) -> Dict:
        preds_list, out_label_list = align_predictions(p.predictions, p.label_ids)

        return {
            "precision": precision_score(out_label_list, preds_list),
            "recall": recall_score(out_label_list, preds_list),
            "f1": f1_score(out_label_list, preds_list),
        }

    # Initialize our Trainer
    trainer = TFTrainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset.get_dataset() if train_dataset else None,
        eval_dataset=eval_dataset.get_dataset() if eval_dataset else None,
        compute_metrics=compute_metrics,
    )
235

Julien Plu's avatar
Julien Plu committed
236
237
238
239
240
    # Training
    if training_args.do_train:
        trainer.train()
        trainer.save_model()
        tokenizer.save_pretrained(training_args.output_dir)
241
242

    # Evaluation
Julien Plu's avatar
Julien Plu committed
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
    results = {}
    if training_args.do_eval:
        logger.info("*** Evaluate ***")

        result = trainer.evaluate()
        output_eval_file = os.path.join(training_args.output_dir, "eval_results.txt")

        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")

            for key, value in result.items():
                logger.info("  %s = %s", key, value)
                writer.write("%s = %s\n" % (key, value))

            results.update(result)

    # Predict
    if training_args.do_predict:
261
262
        test_dataset = TFTokenClassificationDataset(
            token_classification_task=token_classification_task,
Julien Plu's avatar
Julien Plu committed
263
264
265
266
267
268
269
            data_dir=data_args.data_dir,
            tokenizer=tokenizer,
            labels=labels,
            model_type=config.model_type,
            max_seq_length=data_args.max_seq_length,
            overwrite_cache=data_args.overwrite_cache,
            mode=Split.test,
270
        )
271

Julien Plu's avatar
Julien Plu committed
272
273
274
275
276
        predictions, label_ids, metrics = trainer.predict(test_dataset.get_dataset())
        preds_list, labels_list = align_predictions(predictions, label_ids)
        report = classification_report(labels_list, preds_list)

        logger.info("\n%s", report)
277

Julien Plu's avatar
Julien Plu committed
278
        output_test_results_file = os.path.join(training_args.output_dir, "test_results.txt")
279

Julien Plu's avatar
Julien Plu committed
280
281
        with open(output_test_results_file, "w") as writer:
            writer.write("%s\n" % report)
282

Julien Plu's avatar
Julien Plu committed
283
284
285
286
287
        # Save predictions
        output_test_predictions_file = os.path.join(training_args.output_dir, "test_predictions.txt")

        with open(output_test_predictions_file, "w") as writer:
            with open(os.path.join(data_args.data_dir, "test.txt"), "r") as f:
288
289
290
291
292
293
                example_id = 0

                for line in f:
                    if line.startswith("-DOCSTART-") or line == "" or line == "\n":
                        writer.write(line)

Julien Plu's avatar
Julien Plu committed
294
                        if not preds_list[example_id]:
295
                            example_id += 1
Julien Plu's avatar
Julien Plu committed
296
297
298
                    elif preds_list[example_id]:
                        output_line = line.split()[0] + " " + preds_list[example_id].pop(0) + "\n"

299
300
                        writer.write(output_line)
                    else:
Julien Plu's avatar
Julien Plu committed
301
302
303
                        logger.warning("Maximum sequence length exceeded: No prediction for '%s'.", line.split()[0])

    return results
304
305
306


if __name__ == "__main__":
Julien Plu's avatar
Julien Plu committed
307
    main()