run_tf_ner.py 9.79 KB
Newer Older
1
# coding=utf-8
Julien Plu's avatar
Julien Plu committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Fine-tuning the library models for named entity recognition."""


import logging
Aymeric Augustin's avatar
Aymeric Augustin committed
19
import os
Julien Plu's avatar
Julien Plu committed
20
21
from dataclasses import dataclass, field
from typing import Dict, List, Optional, Tuple
Aymeric Augustin's avatar
Aymeric Augustin committed
22

23
import numpy as np
Julien Plu's avatar
Julien Plu committed
24
from seqeval.metrics import classification_report, f1_score, precision_score, recall_score
25

Aymeric Augustin's avatar
Aymeric Augustin committed
26
from transformers import (
27
28
    AutoConfig,
    AutoTokenizer,
Julien Plu's avatar
Julien Plu committed
29
30
    EvalPrediction,
    HfArgumentParser,
31
    TFAutoModelForTokenClassification,
Julien Plu's avatar
Julien Plu committed
32
33
    TFTrainer,
    TFTrainingArguments,
Aymeric Augustin's avatar
Aymeric Augustin committed
34
)
Julien Plu's avatar
Julien Plu committed
35
from utils_ner import Split, TFNerDataset, get_labels
36
37


Julien Plu's avatar
Julien Plu committed
38
logger = logging.getLogger(__name__)
39
40


Julien Plu's avatar
Julien Plu committed
41
42
43
44
45
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """
46

Julien Plu's avatar
Julien Plu committed
47
48
    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
49
    )
Julien Plu's avatar
Julien Plu committed
50
51
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
52
    )
Julien Plu's avatar
Julien Plu committed
53
54
55
56
57
58
59
60
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    use_fast: bool = field(default=False, metadata={"help": "Set this flag to use fast tokenization."})
    # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
    # or just modify its tokenizer_config.json.
    cache_dir: Optional[str] = field(
        default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
61
    )
62
63


Julien Plu's avatar
Julien Plu committed
64
65
66
67
68
@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """
69

Julien Plu's avatar
Julien Plu committed
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
    data_dir: str = field(
        metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."}
    )
    labels: Optional[str] = field(
        metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."}
    )
    max_seq_length: int = field(
        default=128,
        metadata={
            "help": "The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded."
        },
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
    )
86
87


Julien Plu's avatar
Julien Plu committed
88
89
90
91
92
93
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.
    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments))
    model_args, data_args, training_args = parser.parse_args_into_dataclasses()
94

95
    if (
Julien Plu's avatar
Julien Plu committed
96
97
98
99
        os.path.exists(training_args.output_dir)
        and os.listdir(training_args.output_dir)
        and training_args.do_train
        and not training_args.overwrite_output_dir
100
    ):
101
        raise ValueError(
Julien Plu's avatar
Julien Plu committed
102
            f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome."
103
        )
104

Julien Plu's avatar
Julien Plu committed
105
106
107
108
109
    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
110
    )
Julien Plu's avatar
Julien Plu committed
111
    logger.info(
112
113
114
        "n_replicas: %s, distributed training: %s, 16-bits training: %s",
        training_args.n_replicas,
        bool(training_args.n_replicas > 1),
Julien Plu's avatar
Julien Plu committed
115
116
117
        training_args.fp16,
    )
    logger.info("Training/evaluation parameters %s", training_args)
118

Julien Plu's avatar
Julien Plu committed
119
120
121
    # Prepare Token Classification task
    labels = get_labels(data_args.labels)
    label_map: Dict[int, str] = {i: label for i, label in enumerate(labels)}
Julien Plu's avatar
Julien Plu committed
122
    num_labels = len(labels)
Julien Plu's avatar
Julien Plu committed
123
124
125
126
127
128
129

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.

130
    config = AutoConfig.from_pretrained(
Julien Plu's avatar
Julien Plu committed
131
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
132
        num_labels=num_labels,
Julien Plu's avatar
Julien Plu committed
133
134
135
136
137
138
139
140
        id2label=label_map,
        label2id={label: i for i, label in enumerate(labels)},
        cache_dir=model_args.cache_dir,
    )
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        use_fast=model_args.use_fast,
141
    )
142

Julien Plu's avatar
Julien Plu committed
143
144
145
146
147
148
    with training_args.strategy.scope():
        model = TFAutoModelForTokenClassification.from_pretrained(
            model_args.model_name_or_path,
            from_pt=bool(".bin" in model_args.model_name_or_path),
            config=config,
            cache_dir=model_args.cache_dir,
149
        )
150

Julien Plu's avatar
Julien Plu committed
151
152
153
154
155
156
157
158
159
160
    # Get datasets
    train_dataset = (
        TFNerDataset(
            data_dir=data_args.data_dir,
            tokenizer=tokenizer,
            labels=labels,
            model_type=config.model_type,
            max_seq_length=data_args.max_seq_length,
            overwrite_cache=data_args.overwrite_cache,
            mode=Split.train,
161
        )
Julien Plu's avatar
Julien Plu committed
162
163
164
165
166
167
168
169
170
171
172
173
        if training_args.do_train
        else None
    )
    eval_dataset = (
        TFNerDataset(
            data_dir=data_args.data_dir,
            tokenizer=tokenizer,
            labels=labels,
            model_type=config.model_type,
            max_seq_length=data_args.max_seq_length,
            overwrite_cache=data_args.overwrite_cache,
            mode=Split.dev,
174
        )
Julien Plu's avatar
Julien Plu committed
175
176
177
        if training_args.do_eval
        else None
    )
178

Julien Plu's avatar
Julien Plu committed
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
    def align_predictions(predictions: np.ndarray, label_ids: np.ndarray) -> Tuple[List[int], List[int]]:
        preds = np.argmax(predictions, axis=2)
        batch_size, seq_len = preds.shape
        out_label_list = [[] for _ in range(batch_size)]
        preds_list = [[] for _ in range(batch_size)]

        for i in range(batch_size):
            for j in range(seq_len):
                if label_ids[i, j] != -1:
                    out_label_list[i].append(label_map[label_ids[i][j]])
                    preds_list[i].append(label_map[preds[i][j]])

        return preds_list, out_label_list

    def compute_metrics(p: EvalPrediction) -> Dict:
        preds_list, out_label_list = align_predictions(p.predictions, p.label_ids)

        return {
            "precision": precision_score(out_label_list, preds_list),
            "recall": recall_score(out_label_list, preds_list),
            "f1": f1_score(out_label_list, preds_list),
        }

    # Initialize our Trainer
    trainer = TFTrainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset.get_dataset() if train_dataset else None,
        eval_dataset=eval_dataset.get_dataset() if eval_dataset else None,
        compute_metrics=compute_metrics,
    )
210

Julien Plu's avatar
Julien Plu committed
211
212
213
214
215
    # Training
    if training_args.do_train:
        trainer.train()
        trainer.save_model()
        tokenizer.save_pretrained(training_args.output_dir)
216
217

    # Evaluation
Julien Plu's avatar
Julien Plu committed
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
    results = {}
    if training_args.do_eval:
        logger.info("*** Evaluate ***")

        result = trainer.evaluate()
        output_eval_file = os.path.join(training_args.output_dir, "eval_results.txt")

        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")

            for key, value in result.items():
                logger.info("  %s = %s", key, value)
                writer.write("%s = %s\n" % (key, value))

            results.update(result)

    # Predict
    if training_args.do_predict:
        test_dataset = TFNerDataset(
            data_dir=data_args.data_dir,
            tokenizer=tokenizer,
            labels=labels,
            model_type=config.model_type,
            max_seq_length=data_args.max_seq_length,
            overwrite_cache=data_args.overwrite_cache,
            mode=Split.test,
244
        )
245

Julien Plu's avatar
Julien Plu committed
246
247
248
249
250
        predictions, label_ids, metrics = trainer.predict(test_dataset.get_dataset())
        preds_list, labels_list = align_predictions(predictions, label_ids)
        report = classification_report(labels_list, preds_list)

        logger.info("\n%s", report)
251

Julien Plu's avatar
Julien Plu committed
252
        output_test_results_file = os.path.join(training_args.output_dir, "test_results.txt")
253

Julien Plu's avatar
Julien Plu committed
254
255
        with open(output_test_results_file, "w") as writer:
            writer.write("%s\n" % report)
256

Julien Plu's avatar
Julien Plu committed
257
258
259
260
261
        # Save predictions
        output_test_predictions_file = os.path.join(training_args.output_dir, "test_predictions.txt")

        with open(output_test_predictions_file, "w") as writer:
            with open(os.path.join(data_args.data_dir, "test.txt"), "r") as f:
262
263
264
265
266
267
                example_id = 0

                for line in f:
                    if line.startswith("-DOCSTART-") or line == "" or line == "\n":
                        writer.write(line)

Julien Plu's avatar
Julien Plu committed
268
                        if not preds_list[example_id]:
269
                            example_id += 1
Julien Plu's avatar
Julien Plu committed
270
271
272
                    elif preds_list[example_id]:
                        output_line = line.split()[0] + " " + preds_list[example_id].pop(0) + "\n"

273
274
                        writer.write(output_line)
                    else:
Julien Plu's avatar
Julien Plu committed
275
276
277
                        logger.warning("Maximum sequence length exceeded: No prediction for '%s'.", line.split()[0])

    return results
278
279
280


if __name__ == "__main__":
Julien Plu's avatar
Julien Plu committed
281
    main()