modeling_flax_utils.py 21.5 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2021 The Google Flax Team Authors and The HuggingFace Inc. team.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
17
from functools import partial
18
from pickle import UnpicklingError
19
from typing import Dict, Set, Tuple, Union
20
21
22
23

import flax.linen as nn
import jax
import jax.numpy as jnp
24
from flax.core.frozen_dict import FrozenDict, unfreeze
25
26
from flax.serialization import from_bytes, to_bytes
from flax.traverse_util import flatten_dict, unflatten_dict
27
28
29
from jax.random import PRNGKey

from .configuration_utils import PretrainedConfig
30
from .file_utils import (
Sylvain Gugger's avatar
Sylvain Gugger committed
31
    CONFIG_NAME,
32
33
    FLAX_WEIGHTS_NAME,
    WEIGHTS_NAME,
Sylvain Gugger's avatar
Sylvain Gugger committed
34
    PushToHubMixin,
35
    add_code_sample_docstrings,
36
37
38
39
40
41
    add_start_docstrings_to_model_forward,
    cached_path,
    copy_func,
    hf_bucket_url,
    is_offline_mode,
    is_remote_url,
42
    replace_return_docstrings,
43
)
Patrick von Platen's avatar
Patrick von Platen committed
44
from .generation_flax_utils import FlaxGenerationMixin
45
from .modeling_flax_pytorch_utils import load_pytorch_checkpoint_in_flax_state_dict
46
47
48
49
50
51
from .utils import logging


logger = logging.get_logger(__name__)


Suraj Patil's avatar
Suraj Patil committed
52
53
54
55
def quick_gelu(x):
    return x * jax.nn.sigmoid(1.702 * x)


56
ACT2FN = {
57
    "gelu": partial(nn.gelu, approximate=False),
58
    "relu": nn.relu,
TFUsers's avatar
TFUsers committed
59
    "silu": nn.swish,
60
    "swish": nn.swish,
61
    "gelu_new": partial(nn.gelu, approximate=True),
Suraj Patil's avatar
Suraj Patil committed
62
    "quick_gelu": quick_gelu,
63
64
65
}


Patrick von Platen's avatar
Patrick von Platen committed
66
class FlaxPreTrainedModel(PushToHubMixin, FlaxGenerationMixin):
67
68
69
70
71
72
73
74
75
76
77
78
79
    r"""
    Base class for all models.

    :class:`~transformers.FlaxPreTrainedModel` takes care of storing the configuration of the models and handles
    methods for loading, downloading and saving models.

    Class attributes (overridden by derived classes):

        - **config_class** (:class:`~transformers.PretrainedConfig`) -- A subclass of
          :class:`~transformers.PretrainedConfig` to use as configuration class for this model architecture.
        - **base_model_prefix** (:obj:`str`) -- A string indicating the attribute associated to the base model in
          derived classes of the same architecture adding modules on top of the base model.
    """
80
81
82
    config_class = None
    base_model_prefix = ""

83
    def __init__(
84
85
86
87
88
89
        self,
        config: PretrainedConfig,
        module: nn.Module,
        input_shape: Tuple = (1, 1),
        seed: int = 0,
        dtype: jnp.dtype = jnp.float32,
90
    ):
91
92
93
        if config is None:
            raise ValueError("config cannot be None")

94
95
        if module is None:
            raise ValueError("module cannot be None")
96
97
98
99
100
101
102

        # Those are private to be exposed as typed property on derived classes.
        self._config = config
        self._module = module

        # Those are public as their type is generic to every derived classes.
        self.key = PRNGKey(seed)
103
        self.dtype = dtype
104

105
        # randomly initialized parameters
106
        random_params = self.init_weights(self.key, input_shape)
107
108
109
110
111

        # save required_params as set
        self._required_params = set(flatten_dict(unfreeze(random_params)).keys())
        self.params = random_params

112
    def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple) -> Dict:
113
114
        raise NotImplementedError(f"init method has to be implemented for {self}")

115
116
117
118
    @property
    def config(self) -> PretrainedConfig:
        return self._config

119
120
121
122
    @property
    def module(self) -> nn.Module:
        return self._module

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
    @property
    def params(self) -> Union[Dict, FrozenDict]:
        return self._params

    @property
    def required_params(self) -> Set:
        return self._required_params

    @params.setter
    def params(self, params: Union[Dict, FrozenDict]):
        if isinstance(params, FrozenDict):
            params = unfreeze(params)
        param_keys = set(flatten_dict(params).keys())
        if len(self.required_params - param_keys) > 0:
            raise ValueError(
                "Some parameters are missing. Make sure that `params` include the following "
                f"parameters {self.required_params - param_keys}"
            )
141
        self._params = params
142

143
    @classmethod
144
145
146
147
148
149
150
151
    def from_pretrained(
        cls,
        pretrained_model_name_or_path: Union[str, os.PathLike],
        dtype: jnp.dtype = jnp.float32,
        *model_args,
        **kwargs
    ):

152
        r"""
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
        Instantiate a pretrained flax model from a pre-trained model configuration.

        The warning `Weights from XXX not initialized from pretrained model` means that the weights of XXX do not come
        pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning
        task.

        The warning `Weights from XXX not used in YYY` means that the layer XXX is not used by YYY, therefore those
        weights are discarded.

        Parameters:
            pretrained_model_name_or_path (:obj:`str` or :obj:`os.PathLike`):
                Can be either:

                    - A string, the `model id` of a pretrained model hosted inside a model repo on huggingface.co.
                      Valid model ids can be located at the root-level, like ``bert-base-uncased``, or namespaced under
                      a user or organization name, like ``dbmdz/bert-base-german-cased``.
                    - A path to a `directory` containing model weights saved using
                      :func:`~transformers.FlaxPreTrainedModel.save_pretrained`, e.g., ``./my_model_directory/``.
                    - A path or url to a `pt index checkpoint file` (e.g, ``./tf_model/model.ckpt.index``). In this
                      case, ``from_pt`` should be set to :obj:`True`.
            model_args (sequence of positional arguments, `optional`):
                All remaning positional arguments will be passed to the underlying model's ``__init__`` method.
            config (:obj:`Union[PretrainedConfig, str, os.PathLike]`, `optional`):
                Can be either:

                    - an instance of a class derived from :class:`~transformers.PretrainedConfig`,
                    - a string or path valid as input to :func:`~transformers.PretrainedConfig.from_pretrained`.

                Configuration for the model to use instead of an automatically loaded configuation. Configuration can
                be automatically loaded when:

                    - The model is a model provided by the library (loaded with the `model id` string of a pretrained
                      model).
                    - The model was saved using :func:`~transformers.PreTrainedModel.save_pretrained` and is reloaded
                      by supplying the save directory.
                    - The model is loaded by supplying a local directory as ``pretrained_model_name_or_path`` and a
                      configuration JSON file named `config.json` is found in the directory.
            cache_dir (:obj:`Union[str, os.PathLike]`, `optional`):
                Path to a directory in which a downloaded pretrained model configuration should be cached if the
                standard cache should not be used.
            from_pt (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Load the model weights from a PyTorch checkpoint save file (see docstring of
                ``pretrained_model_name_or_path`` argument).
            force_download (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Whether or not to delete incompletely received files. Will attempt to resume the download if such a
                file exists.
            proxies (:obj:`Dict[str, str], `optional`):
                A dictionary of proxy servers to use by protocol or endpoint, e.g., :obj:`{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only(:obj:`bool`, `optional`, defaults to :obj:`False`):
                Whether or not to only look at local files (i.e., do not try to download the model).
            revision(:obj:`str`, `optional`, defaults to :obj:`"main"`):
                The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
                git-based system for storing models and other artifacts on huggingface.co, so ``revision`` can be any
                identifier allowed by git.
            kwargs (remaining dictionary of keyword arguments, `optional`):
                Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
                :obj:`output_attentions=True`). Behaves differently depending on whether a ``config`` is provided or
                automatically loaded:

                    - If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the
                      underlying model's ``__init__`` method (we assume all relevant updates to the configuration have
                      already been done)
                    - If a configuration is not provided, ``kwargs`` will be first passed to the configuration class
                      initialization function (:func:`~transformers.PretrainedConfig.from_pretrained`). Each key of
                      ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute
                      with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration
                      attribute will be passed to the underlying model's ``__init__`` function.

        Examples::

            >>> from transformers import BertConfig, FlaxBertModel
            >>> # Download model and configuration from huggingface.co and cache.
            >>> model = FlaxBertModel.from_pretrained('bert-base-cased')
            >>> # Model was saved using `save_pretrained('./test/saved_model/')` (for example purposes, not runnable).
            >>> model = FlaxBertModel.from_pretrained('./test/saved_model/')
            >>> # Loading from a PyTorch checkpoint file instead of a PyTorch model (slower, for example purposes, not runnable).
            >>> config = BertConfig.from_json_file('./pt_model/config.json')
            >>> model = FlaxBertModel.from_pretrained('./pt_model/pytorch_model.bin', from_pt=True, config=config)
235
236
237
        """
        config = kwargs.pop("config", None)
        cache_dir = kwargs.pop("cache_dir", None)
238
        from_pt = kwargs.pop("from_pt", False)
239
240
241
242
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", False)
243
        use_auth_token = kwargs.pop("use_auth_token", None)
Julien Chaumond's avatar
Julien Chaumond committed
244
        revision = kwargs.pop("revision", None)
245
246
247
248
249
250
        from_pipeline = kwargs.pop("_from_pipeline", None)
        from_auto_class = kwargs.pop("_from_auto", False)

        user_agent = {"file_type": "model", "framework": "flax", "from_auto_class": from_auto_class}
        if from_pipeline is not None:
            user_agent["using_pipeline"] = from_pipeline
251

252
253
254
255
        if is_offline_mode() and not local_files_only:
            logger.info("Offline mode: forcing local_files_only=True")
            local_files_only = True

256
257
258
259
260
261
262
263
264
265
266
267
        # Load config if we don't provide a configuration
        if not isinstance(config, PretrainedConfig):
            config_path = config if config is not None else pretrained_model_name_or_path
            config, model_kwargs = cls.config_class.from_pretrained(
                config_path,
                *model_args,
                cache_dir=cache_dir,
                return_unused_kwargs=True,
                force_download=force_download,
                resume_download=resume_download,
                proxies=proxies,
                local_files_only=local_files_only,
268
                use_auth_token=use_auth_token,
Julien Chaumond's avatar
Julien Chaumond committed
269
                revision=revision,
270
271
                _from_auto=from_auto_class,
                _from_pipeline=from_pipeline,
272
273
274
275
276
                **kwargs,
            )
        else:
            model_kwargs = kwargs

277
278
279
        # Add the dtype to model_kwargs
        model_kwargs["dtype"] = dtype

280
281
        # Load model
        if pretrained_model_name_or_path is not None:
282
283
284
285
286
287
288
289
290
            if os.path.isdir(pretrained_model_name_or_path):
                if from_pt and os.path.isfile(os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)):
                    # Load from a PyTorch checkpoint
                    archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)
                elif os.path.isfile(os.path.join(pretrained_model_name_or_path, FLAX_WEIGHTS_NAME)):
                    # Load from a Flax checkpoint
                    archive_file = os.path.join(pretrained_model_name_or_path, FLAX_WEIGHTS_NAME)
                else:
                    raise EnvironmentError(
291
292
                        f"Error no file named {[FLAX_WEIGHTS_NAME, WEIGHTS_NAME]} found in directory "
                        f"{pretrained_model_name_or_path} or `from_pt` set to False"
293
294
                    )
            elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path):
295
296
                archive_file = pretrained_model_name_or_path
            else:
297
298
299
300
301
                archive_file = hf_bucket_url(
                    pretrained_model_name_or_path,
                    filename=WEIGHTS_NAME if from_pt else FLAX_WEIGHTS_NAME,
                    revision=revision,
                )
302
303
304
305
306
307
308
309
310
311

            # redirect to the cache, if necessary
            try:
                resolved_archive_file = cached_path(
                    archive_file,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    proxies=proxies,
                    resume_download=resume_download,
                    local_files_only=local_files_only,
312
                    use_auth_token=use_auth_token,
313
                    user_agent=user_agent,
314
                )
Julien Chaumond's avatar
Julien Chaumond committed
315
316
317
318
319
320
321
            except EnvironmentError as err:
                logger.error(err)
                msg = (
                    f"Can't load weights for '{pretrained_model_name_or_path}'. Make sure that:\n\n"
                    f"- '{pretrained_model_name_or_path}' is a correct model identifier listed on 'https://huggingface.co/models'\n\n"
                    f"- or '{pretrained_model_name_or_path}' is the correct path to a directory containing a file named {WEIGHTS_NAME}.\n\n"
                )
322
323
324
325
326
327
328
329
330
                raise EnvironmentError(msg)

            if resolved_archive_file == archive_file:
                logger.info(f"loading weights file {archive_file}")
            else:
                logger.info(f"loading weights file {archive_file} from cache at {resolved_archive_file}")
        else:
            resolved_archive_file = None

331
332
        # init random models
        model = cls(config, *model_args, **model_kwargs)
333

334
335
336
337
338
339
340
341
        if from_pt:
            state = load_pytorch_checkpoint_in_flax_state_dict(model, resolved_archive_file)
        else:
            with open(resolved_archive_file, "rb") as state_f:
                try:
                    state = from_bytes(cls, state_f.read())
                except UnpicklingError:
                    raise EnvironmentError(f"Unable to convert {archive_file} to Flax deserializable object. ")
342
343
344
345
            # make sure all arrays are stored as jnp.arrays
            # NOTE: This is to prevent a bug this will be fixed in Flax >= v0.3.4:
            # https://github.com/google/flax/issues/1261
            state = jax.tree_util.tree_map(jnp.array, state)
346

347
348
349
        # if model is base model only use model_prefix key
        if cls.base_model_prefix not in dict(model.params) and cls.base_model_prefix in state:
            state = state[cls.base_model_prefix]
350

351
352
        # flatten dicts
        state = flatten_dict(state)
353

354
        random_state = flatten_dict(unfreeze(model.params))
355

356
357
358
359
360
361
362
        missing_keys = model.required_params - set(state.keys())
        unexpected_keys = set(state.keys()) - model.required_params

        # add missing keys as random parameters
        for missing_key in missing_keys:
            state[missing_key] = random_state[missing_key]

363
364
365
366
        # remove unexpected keys to not be saved again
        for unexpected_key in unexpected_keys:
            del state[unexpected_key]

367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
        if len(unexpected_keys) > 0:
            logger.warning(
                f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when "
                f"initializing {model.__class__.__name__}: {unexpected_keys}\n"
                f"- This IS expected if you are initializing {model.__class__.__name__} from the checkpoint of a model trained on another task "
                f"or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n"
                f"- This IS NOT expected if you are initializing {model.__class__.__name__} from the checkpoint of a model that you expect "
                f"to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model)."
            )
        else:
            logger.info(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n")

        if len(missing_keys) > 0:
            logger.warning(
                f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at {pretrained_model_name_or_path} "
                f"and are newly initialized: {missing_keys}\n"
                f"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference."
            )
        else:
            logger.info(
                f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at {pretrained_model_name_or_path}.\n"
                f"If your task is similar to the task the model of the checkpoint was trained on, "
                f"you can already use {model.__class__.__name__} for predictions without further training."
            )

        # set correct parameters
        model.params = unflatten_dict(state)
394

395
396
        return model

397
    def save_pretrained(self, save_directory: Union[str, os.PathLike], params=None, push_to_hub=False, **kwargs):
398
399
400
401
402
403
404
        """
        Save a model and its configuration file to a directory, so that it can be re-loaded using the
        `:func:`~transformers.FlaxPreTrainedModel.from_pretrained`` class method

        Arguments:
            save_directory (:obj:`str` or :obj:`os.PathLike`):
                Directory to which to save. Will be created if it doesn't exist.
Sylvain Gugger's avatar
Sylvain Gugger committed
405
406
407
408
409
            push_to_hub (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Whether or not to push your model to the Hugging Face model hub after saving it.
            kwargs:
                Additional key word arguments passed along to the
                :meth:`~transformers.file_utils.PushToHubMixin.push_to_hub` method.
410
411
        """
        if os.path.isfile(save_directory):
412
            logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
413
414
415
416
417
418
            return
        os.makedirs(save_directory, exist_ok=True)

        # get abs dir
        save_directory = os.path.abspath(save_directory)
        # save config as well
419
        self.config.architectures = [self.__class__.__name__[4:]]
420
421
422
        self.config.save_pretrained(save_directory)

        # save model
Sylvain Gugger's avatar
Sylvain Gugger committed
423
424
        output_model_file = os.path.join(save_directory, FLAX_WEIGHTS_NAME)
        with open(output_model_file, "wb") as f:
425
426
            params = params if params is not None else self.params
            model_bytes = to_bytes(params)
427
            f.write(model_bytes)
428

Sylvain Gugger's avatar
Sylvain Gugger committed
429
430
431
432
433
434
435
        logger.info(f"Model weights saved in {output_model_file}")

        if push_to_hub:
            saved_files = [os.path.join(save_directory, CONFIG_NAME), output_model_file]
            url = self._push_to_hub(save_files=saved_files, **kwargs)
            logger.info(f"Model pushed to the hub in this commit: {url}")

436
437
438
439
440
441
442
443

def overwrite_call_docstring(model_class, docstring):
    # copy __call__ function to be sure docstring is changed only for this function
    model_class.__call__ = copy_func(model_class.__call__)
    # delete existing docstring
    model_class.__call__.__doc__ = None
    # set correct docstring
    model_class.__call__ = add_start_docstrings_to_model_forward(docstring)(model_class.__call__)
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462


def append_call_sample_docstring(model_class, tokenizer_class, checkpoint, output_type, config_class, mask=None):
    model_class.__call__ = copy_func(model_class.__call__)
    model_class.__call__ = add_code_sample_docstrings(
        tokenizer_class=tokenizer_class,
        checkpoint=checkpoint,
        output_type=output_type,
        config_class=config_class,
        model_cls=model_class.__name__,
    )(model_class.__call__)


def append_replace_return_docstrings(model_class, output_type, config_class):
    model_class.__call__ = copy_func(model_class.__call__)
    model_class.__call__ = replace_return_docstrings(
        output_type=output_type,
        config_class=config_class,
    )(model_class.__call__)