test_pipelines_automatic_speech_recognition.py 5.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

17
18
import pytest

19
from transformers import AutoFeatureExtractor, AutoTokenizer, Speech2TextForConditionalGeneration, Wav2Vec2ForCTC
20
21
from transformers.pipelines import AutomaticSpeechRecognitionPipeline, pipeline
from transformers.testing_utils import is_pipeline_test, require_datasets, require_torch, require_torchaudio, slow
22
23


24
# We can't use this mixin because it assumes TF support.
25
26
27
# from .test_pipelines_common import CustomInputPipelineCommonMixin


28
@is_pipeline_test
29
class AutomaticSpeechRecognitionPipelineTests(unittest.TestCase):
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
    @require_torch
    @slow
    def test_pt_defaults(self):
        pipeline("automatic-speech-recognition", framework="pt")

    @require_torch
    def test_torch_small(self):
        import numpy as np

        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model="facebook/s2t-small-mustc-en-fr-st",
            tokenizer="facebook/s2t-small-mustc-en-fr-st",
            framework="pt",
        )
        waveform = np.zeros((34000,))
        output = speech_recognizer(waveform)
        self.assertEqual(output, {"text": "C'est ce que j'ai fait 脿 ce moment-l脿."})

49
50
51
    @require_torch
    def test_torch_small_no_tokenizer_files(self):
        # test that model without tokenizer file cannot be loaded
52
        with pytest.raises(OSError):
53
54
            pipeline(
                task="automatic-speech-recognition",
55
                model="patrickvonplaten/tiny-wav2vec2-no-tokenizer",
56
57
58
                framework="pt",
            )

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
    @require_datasets
    @require_torch
    @slow
    def test_torch_large(self):
        import numpy as np

        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model="facebook/wav2vec2-base-960h",
            tokenizer="facebook/wav2vec2-base-960h",
            framework="pt",
        )
        waveform = np.zeros((34000,))
        output = speech_recognizer(waveform)
        self.assertEqual(output, {"text": ""})

        from datasets import load_dataset

        ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
        filename = ds[0]["file"]
        output = speech_recognizer(filename)
        self.assertEqual(output, {"text": "A MAN SAID TO THE UNIVERSE SIR I EXIST"})
81

82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
    @require_datasets
    @require_torch
    @slow
    def test_torch_speech_encoder_decoder(self):
        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model="facebook/s2t-wav2vec2-large-en-de",
            feature_extractor="facebook/s2t-wav2vec2-large-en-de",
            framework="pt",
        )

        from datasets import load_dataset

        ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
        filename = ds[0]["file"]
        output = speech_recognizer(filename)
        self.assertEqual(output, {"text": 'Ein Mann sagte zum Universum : " Sir, ich existiert! "'})

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
    @slow
    @require_torch
    @require_datasets
    def test_simple_wav2vec2(self):
        import numpy as np
        from datasets import load_dataset

        model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
        tokenizer = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h")
        feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h")

        asr = AutomaticSpeechRecognitionPipeline(model=model, tokenizer=tokenizer, feature_extractor=feature_extractor)

        waveform = np.zeros((34000,))
        output = asr(waveform)
        self.assertEqual(output, {"text": ""})

        ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
        filename = ds[0]["file"]
        output = asr(filename)
        self.assertEqual(output, {"text": "A MAN SAID TO THE UNIVERSE SIR I EXIST"})

        filename = ds[0]["file"]
        with open(filename, "rb") as f:
            data = f.read()
        output = asr(data)
        self.assertEqual(output, {"text": "A MAN SAID TO THE UNIVERSE SIR I EXIST"})

    @slow
    @require_torch
    @require_torchaudio
    @require_datasets
    def test_simple_s2t(self):
        import numpy as np
        from datasets import load_dataset

        model = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-small-mustc-en-it-st")
        tokenizer = AutoTokenizer.from_pretrained("facebook/s2t-small-mustc-en-it-st")
        feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/s2t-small-mustc-en-it-st")

        asr = AutomaticSpeechRecognitionPipeline(model=model, tokenizer=tokenizer, feature_extractor=feature_extractor)

        waveform = np.zeros((34000,))

        output = asr(waveform)
        self.assertEqual(output, {"text": "E questo 猫 il motivo per cui non ci siamo mai incontrati."})

        ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
        filename = ds[0]["file"]
        output = asr(filename)
        self.assertEqual(output, {"text": "Un uomo disse all'universo: \"Signore, io esisto."})

        filename = ds[0]["file"]
        with open(filename, "rb") as f:
            data = f.read()
        output = asr(data)
        self.assertEqual(output, {"text": "Un uomo disse all'universo: \"Signore, io esisto."})