test_pipelines_automatic_speech_recognition.py 4.78 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

from transformers import AutoFeatureExtractor, AutoTokenizer, Speech2TextForConditionalGeneration, Wav2Vec2ForCTC
18
19
from transformers.pipelines import AutomaticSpeechRecognitionPipeline, pipeline
from transformers.testing_utils import is_pipeline_test, require_datasets, require_torch, require_torchaudio, slow
20
21


22
# We can't use this mixin because it assumes TF support.
23
24
25
# from .test_pipelines_common import CustomInputPipelineCommonMixin


26
@is_pipeline_test
27
class AutomaticSpeechRecognitionPipelineTests(unittest.TestCase):
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
    @require_torch
    @slow
    def test_pt_defaults(self):
        pipeline("automatic-speech-recognition", framework="pt")

    @require_torch
    def test_torch_small(self):
        import numpy as np

        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model="facebook/s2t-small-mustc-en-fr-st",
            tokenizer="facebook/s2t-small-mustc-en-fr-st",
            framework="pt",
        )
        waveform = np.zeros((34000,))
        output = speech_recognizer(waveform)
        self.assertEqual(output, {"text": "C'est ce que j'ai fait 脿 ce moment-l脿."})

    @require_datasets
    @require_torch
    @slow
    def test_torch_large(self):
        import numpy as np

        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model="facebook/wav2vec2-base-960h",
            tokenizer="facebook/wav2vec2-base-960h",
            framework="pt",
        )
        waveform = np.zeros((34000,))
        output = speech_recognizer(waveform)
        self.assertEqual(output, {"text": ""})

        from datasets import load_dataset

        ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
        filename = ds[0]["file"]
        output = speech_recognizer(filename)
        self.assertEqual(output, {"text": "A MAN SAID TO THE UNIVERSE SIR I EXIST"})
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

    @slow
    @require_torch
    @require_datasets
    def test_simple_wav2vec2(self):
        import numpy as np
        from datasets import load_dataset

        model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
        tokenizer = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h")
        feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h")

        asr = AutomaticSpeechRecognitionPipeline(model=model, tokenizer=tokenizer, feature_extractor=feature_extractor)

        waveform = np.zeros((34000,))
        output = asr(waveform)
        self.assertEqual(output, {"text": ""})

        ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
        filename = ds[0]["file"]
        output = asr(filename)
        self.assertEqual(output, {"text": "A MAN SAID TO THE UNIVERSE SIR I EXIST"})

        filename = ds[0]["file"]
        with open(filename, "rb") as f:
            data = f.read()
        output = asr(data)
        self.assertEqual(output, {"text": "A MAN SAID TO THE UNIVERSE SIR I EXIST"})

    @slow
    @require_torch
    @require_torchaudio
    @require_datasets
    def test_simple_s2t(self):
        import numpy as np
        from datasets import load_dataset

        model = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-small-mustc-en-it-st")
        tokenizer = AutoTokenizer.from_pretrained("facebook/s2t-small-mustc-en-it-st")
        feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/s2t-small-mustc-en-it-st")

        asr = AutomaticSpeechRecognitionPipeline(model=model, tokenizer=tokenizer, feature_extractor=feature_extractor)

        waveform = np.zeros((34000,))

        output = asr(waveform)
        self.assertEqual(output, {"text": "E questo 猫 il motivo per cui non ci siamo mai incontrati."})

        ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
        filename = ds[0]["file"]
        output = asr(filename)
        self.assertEqual(output, {"text": "Un uomo disse all'universo: \"Signore, io esisto."})

        filename = ds[0]["file"]
        with open(filename, "rb") as f:
            data = f.read()
        output = asr(data)
        self.assertEqual(output, {"text": "Un uomo disse all'universo: \"Signore, io esisto."})