test_modeling_tf_albert.py 11 KB
Newer Older
Lysandre's avatar
Lysandre committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

Lysandre's avatar
Lysandre committed
16

17
18
import unittest

Aymeric Augustin's avatar
Aymeric Augustin committed
19
from transformers import AlbertConfig, is_tf_available
Lysandre's avatar
Lysandre committed
20

21
from .test_configuration_common import ConfigTester
22
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor
23
from .utils import require_tf, slow
Lysandre's avatar
Lysandre committed
24
25
26


if is_tf_available():
27
28
    from transformers.modeling_tf_albert import (
        TFAlbertModel,
29
        TFAlbertForPreTraining,
30
31
        TFAlbertForMaskedLM,
        TFAlbertForSequenceClassification,
32
        TFAlbertForQuestionAnswering,
33
34
        TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_MAP,
    )
Lysandre's avatar
Lysandre committed
35
36


37
@require_tf
38
class TFAlbertModelTest(TFModelTesterMixin, unittest.TestCase):
Lysandre's avatar
Lysandre committed
39
40

    all_model_classes = (
41
42
43
44
45
46
47
        (
            TFAlbertModel,
            TFAlbertForPreTraining,
            TFAlbertForMaskedLM,
            TFAlbertForSequenceClassification,
            TFAlbertForQuestionAnswering,
        )
48
49
        if is_tf_available()
        else ()
50
    )
Lysandre's avatar
Lysandre committed
51
52

    class TFAlbertModelTester(object):
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
        def __init__(
            self,
            parent,
            batch_size=13,
            seq_length=7,
            is_training=True,
            use_input_mask=True,
            use_token_type_ids=True,
            use_labels=True,
            vocab_size=99,
            embedding_size=16,
            hidden_size=32,
            num_hidden_layers=5,
            num_attention_heads=4,
            intermediate_size=37,
            hidden_act="gelu",
            hidden_dropout_prob=0.1,
            attention_probs_dropout_prob=0.1,
            max_position_embeddings=512,
            type_vocab_size=16,
            type_sequence_label_size=2,
            initializer_range=0.02,
            num_labels=3,
            num_choices=4,
            scope=None,
        ):
Lysandre's avatar
Lysandre committed
79
80
81
82
83
84
85
86
            self.parent = parent
            self.batch_size = batch_size
            self.seq_length = seq_length
            self.is_training = is_training
            self.use_input_mask = use_input_mask
            self.use_token_type_ids = use_token_type_ids
            self.use_labels = use_labels
            self.vocab_size = vocab_size
Lysandre's avatar
Lysandre committed
87
            self.embedding_size = embedding_size
Lysandre's avatar
Lysandre committed
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
            self.hidden_size = hidden_size
            self.num_hidden_layers = num_hidden_layers
            self.num_attention_heads = num_attention_heads
            self.intermediate_size = intermediate_size
            self.hidden_act = hidden_act
            self.hidden_dropout_prob = hidden_dropout_prob
            self.attention_probs_dropout_prob = attention_probs_dropout_prob
            self.max_position_embeddings = max_position_embeddings
            self.type_vocab_size = type_vocab_size
            self.type_sequence_label_size = type_sequence_label_size
            self.initializer_range = initializer_range
            self.num_labels = num_labels
            self.num_choices = num_choices
            self.scope = scope

        def prepare_config_and_inputs(self):
104
            input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
Lysandre's avatar
Lysandre committed
105
106
107

            input_mask = None
            if self.use_input_mask:
108
                input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
Lysandre's avatar
Lysandre committed
109
110
111

            token_type_ids = None
            if self.use_token_type_ids:
112
                token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
Lysandre's avatar
Lysandre committed
113
114
115
116
117

            sequence_labels = None
            token_labels = None
            choice_labels = None
            if self.use_labels:
118
119
                sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
                token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
Lysandre's avatar
Lysandre committed
120
121
122
                choice_labels = ids_tensor([self.batch_size], self.num_choices)

            config = AlbertConfig(
thomwolf's avatar
thomwolf committed
123
                vocab_size=self.vocab_size,
Lysandre's avatar
Lysandre committed
124
125
126
127
128
129
130
131
132
                hidden_size=self.hidden_size,
                num_hidden_layers=self.num_hidden_layers,
                num_attention_heads=self.num_attention_heads,
                intermediate_size=self.intermediate_size,
                hidden_act=self.hidden_act,
                hidden_dropout_prob=self.hidden_dropout_prob,
                attention_probs_dropout_prob=self.attention_probs_dropout_prob,
                max_position_embeddings=self.max_position_embeddings,
                type_vocab_size=self.type_vocab_size,
133
134
                initializer_range=self.initializer_range,
            )
Lysandre's avatar
Lysandre committed
135
136
137

            return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

138
139
140
        def create_and_check_albert_model(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
Lysandre's avatar
Lysandre committed
141
142
143
144
145
            model = TFAlbertModel(config=config)
            # inputs = {'input_ids': input_ids,
            #           'attention_mask': input_mask,
            #           'token_type_ids': token_type_ids}
            # sequence_output, pooled_output = model(**inputs)
146
            inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Lysandre's avatar
Lysandre committed
147
148
149
150
151
152
153
154
155
156
157
158
            sequence_output, pooled_output = model(inputs)

            inputs = [input_ids, input_mask]
            sequence_output, pooled_output = model(inputs)

            sequence_output, pooled_output = model(input_ids)

            result = {
                "sequence_output": sequence_output.numpy(),
                "pooled_output": pooled_output.numpy(),
            }
            self.parent.assertListEqual(
159
160
161
                list(result["sequence_output"].shape), [self.batch_size, self.seq_length, self.hidden_size]
            )
            self.parent.assertListEqual(list(result["pooled_output"].shape), [self.batch_size, self.hidden_size])
Lysandre's avatar
Lysandre committed
162

163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
        def create_and_check_albert_for_pretraining(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
            config.num_labels = self.num_labels
            model = TFAlbertForPreTraining(config=config)
            inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
            prediction_scores, sop_scores = model(inputs)
            result = {
                "prediction_scores": prediction_scores.numpy(),
                "sop_scores": sop_scores.numpy(),
            }
            self.parent.assertListEqual(
                list(result["prediction_scores"].shape), [self.batch_size, self.seq_length, self.vocab_size]
            )
            self.parent.assertListEqual(list(result["sop_scores"].shape), [self.batch_size, self.num_labels])

179
180
181
        def create_and_check_albert_for_masked_lm(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
Lysandre's avatar
Lysandre committed
182
            model = TFAlbertForMaskedLM(config=config)
183
184
            inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
            (prediction_scores,) = model(inputs)
Lysandre's avatar
Lysandre committed
185
186
187
188
            result = {
                "prediction_scores": prediction_scores.numpy(),
            }
            self.parent.assertListEqual(
189
190
                list(result["prediction_scores"].shape), [self.batch_size, self.seq_length, self.vocab_size]
            )
Lysandre's avatar
Lysandre committed
191

192
193
194
        def create_and_check_albert_for_sequence_classification(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
Lysandre's avatar
Lysandre committed
195
196
            config.num_labels = self.num_labels
            model = TFAlbertForSequenceClassification(config=config)
197
198
            inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
            (logits,) = model(inputs)
Lysandre's avatar
Lysandre committed
199
200
201
            result = {
                "logits": logits.numpy(),
            }
202
            self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.num_labels])
Lysandre's avatar
Lysandre committed
203

204
205
206
207
208
209
210
211
212
213
214
215
216
        def create_and_check_albert_for_question_answering(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
            model = TFAlbertForQuestionAnswering(config=config)
            inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
            start_logits, end_logits = model(inputs)
            result = {
                "start_logits": start_logits.numpy(),
                "end_logits": end_logits.numpy(),
            }
            self.parent.assertListEqual(list(result["start_logits"].shape), [self.batch_size, self.seq_length])
            self.parent.assertListEqual(list(result["end_logits"].shape), [self.batch_size, self.seq_length])

Lysandre's avatar
Lysandre committed
217
218
        def prepare_config_and_inputs_for_common(self):
            config_and_inputs = self.prepare_config_and_inputs()
219
220
221
222
223
224
225
226
227
228
            (
                config,
                input_ids,
                token_type_ids,
                input_mask,
                sequence_labels,
                token_labels,
                choice_labels,
            ) = config_and_inputs
            inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
Lysandre's avatar
Lysandre committed
229
230
231
232
            return config, inputs_dict

    def setUp(self):
        self.model_tester = TFAlbertModelTest.TFAlbertModelTester(self)
233
        self.config_tester = ConfigTester(self, config_class=AlbertConfig, hidden_size=37)
Lysandre's avatar
Lysandre committed
234
235
236
237
238
239
240
241

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_albert_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_albert_model(*config_and_inputs)

242
243
244
245
    def test_for_pretraining(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_albert_for_pretraining(*config_and_inputs)

Lysandre's avatar
Lysandre committed
246
247
    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
248
        self.model_tester.create_and_check_albert_for_masked_lm(*config_and_inputs)
Lysandre's avatar
Lysandre committed
249
250
251

    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
252
        self.model_tester.create_and_check_albert_for_sequence_classification(*config_and_inputs)
Lysandre's avatar
Lysandre committed
253

254
255
256
257
    def test_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_albert_for_question_answering(*config_and_inputs)

258
    @slow
Lysandre's avatar
Lysandre committed
259
    def test_model_from_pretrained(self):
Aymeric Augustin's avatar
Aymeric Augustin committed
260
        for model_name in list(TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
261
            model = TFAlbertModel.from_pretrained(model_name)
Lysandre's avatar
Lysandre committed
262
            self.assertIsNotNone(model)