"...lm-evaluation-harness.git" did not exist on "cd30267a1bd54341d8de481936ba6c9c14dfce20"
test_modeling_marian.py 9.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# coding=utf-8
# Copyright 2020 HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

from transformers import is_torch_available
from transformers.file_utils import cached_property
21
from transformers.hf_api import HfApi
22
from transformers.testing_utils import require_torch, slow, torch_device
23
24
25
26


if is_torch_available():
    import torch
27

28
29
30
    from transformers import (
        AutoConfig,
        AutoModelWithLMHead,
31
32
        AutoTokenizer,
        MarianConfig,
33
        MarianMTModel,
34
        MarianTokenizer,
35
    )
36
    from transformers.convert_marian_to_pytorch import (
37
        ORG_NAME,
38
39
40
        convert_hf_name_to_opus_name,
        convert_opus_name_to_hf_name,
    )
Sam Shleifer's avatar
Sam Shleifer committed
41
    from transformers.modeling_bart import shift_tokens_right
42
    from transformers.pipelines import TranslationPipeline
43
44
45
46


class ModelManagementTests(unittest.TestCase):
    @slow
47
    def test_model_names(self):
48
        model_list = HfApi().model_list()
49
50
51
52
        model_ids = [x.modelId for x in model_list if x.modelId.startswith(ORG_NAME)]
        bad_model_ids = [mid for mid in model_ids if "+" in model_ids]
        self.assertListEqual([], bad_model_ids)
        self.assertGreater(len(model_ids), 500)
53
54
55


@require_torch
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
class MarianIntegrationTest(unittest.TestCase):
    src = "en"
    tgt = "de"
    src_text = [
        "I am a small frog.",
        "Now I can forget the 100 words of german that I know.",
        "Tom asked his teacher for advice.",
        "That's how I would do it.",
        "Tom really admired Mary's courage.",
        "Turn around and close your eyes.",
    ]
    expected_text = [
        "Ich bin ein kleiner Frosch.",
        "Jetzt kann ich die 100 Wörter des Deutschen vergessen, die ich kenne.",
        "Tom bat seinen Lehrer um Rat.",
        "So würde ich das machen.",
        "Tom bewunderte Marias Mut wirklich.",
        "Drehen Sie sich um und schließen Sie die Augen.",
    ]
    # ^^ actual C++ output differs slightly: (1) des Deutschen removed, (2) ""-> "O", (3) tun -> machen

77
78
    @classmethod
    def setUpClass(cls) -> None:
79
80
        cls.model_name = f"Helsinki-NLP/opus-mt-{cls.src}-{cls.tgt}"
        cls.tokenizer: MarianTokenizer = AutoTokenizer.from_pretrained(cls.model_name)
81
82
83
84
85
        cls.eos_token_id = cls.tokenizer.eos_token_id
        return cls

    @cached_property
    def model(self):
86
87
88
89
90
91
        model: MarianMTModel = AutoModelWithLMHead.from_pretrained(self.model_name).to(torch_device)
        c = model.config
        self.assertListEqual(c.bad_words_ids, [[c.pad_token_id]])
        self.assertEqual(c.max_length, 512)
        self.assertEqual(c.decoder_start_token_id, c.pad_token_id)

92
93
94
95
96
        if torch_device == "cuda":
            return model.half()
        else:
            return model

97
98
99
100
101
    def _assert_generated_batch_equal_expected(self, **tokenizer_kwargs):
        generated_words = self.translate_src_text(**tokenizer_kwargs)
        self.assertListEqual(self.expected_text, generated_words)

    def translate_src_text(self, **tokenizer_kwargs):
102
        model_inputs = self.tokenizer.prepare_seq2seq_batch(src_texts=self.src_text, **tokenizer_kwargs).to(
103
104
            torch_device
        )
105
        self.assertEqual(self.model.device, model_inputs.input_ids.device)
106
        generated_ids = self.model.generate(
107
            model_inputs.input_ids, attention_mask=model_inputs.attention_mask, num_beams=2
108
109
110
111
112
113
        )
        generated_words = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
        return generated_words


class TestMarian_EN_DE_More(MarianIntegrationTest):
114
115
    @slow
    def test_forward(self):
116
        src, tgt = ["I am a small frog"], ["Ich bin ein kleiner Frosch."]
117
        expected_ids = [38, 121, 14, 697, 38848, 0]
118

119
        model_inputs: dict = self.tokenizer.prepare_seq2seq_batch(src, tgt_texts=tgt).to(torch_device)
Sam Shleifer's avatar
Sam Shleifer committed
120

121
        self.assertListEqual(expected_ids, model_inputs.input_ids[0].tolist())
122
123
124
125

        desired_keys = {
            "input_ids",
            "attention_mask",
Sam Shleifer's avatar
Sam Shleifer committed
126
            "labels",
127
128
        }
        self.assertSetEqual(desired_keys, set(model_inputs.keys()))
Sam Shleifer's avatar
Sam Shleifer committed
129
130
131
        model_inputs["decoder_input_ids"] = shift_tokens_right(model_inputs.labels, self.tokenizer.pad_token_id)
        model_inputs["return_dict"] = True
        model_inputs["use_cache"] = False
132
        with torch.no_grad():
Sam Shleifer's avatar
Sam Shleifer committed
133
134
            outputs = self.model(**model_inputs)
        max_indices = outputs.logits.argmax(-1)
135
        self.tokenizer.batch_decode(max_indices)
136

137
138
    def test_unk_support(self):
        t = self.tokenizer
139
        ids = t.prepare_seq2seq_batch(["||"]).to(torch_device).input_ids[0].tolist()
140
141
142
        expected = [t.unk_token_id, t.unk_token_id, t.eos_token_id]
        self.assertEqual(expected, ids)

143
    def test_pad_not_split(self):
144
        input_ids_w_pad = self.tokenizer.prepare_seq2seq_batch(["I am a small frog <pad>"]).input_ids[0].tolist()
145
        expected_w_pad = [38, 121, 14, 697, 38848, self.tokenizer.pad_token_id, 0]  # pad
146
        self.assertListEqual(expected_w_pad, input_ids_w_pad)
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194

    @slow
    def test_batch_generation_en_de(self):
        self._assert_generated_batch_equal_expected()

    def test_auto_config(self):
        config = AutoConfig.from_pretrained(self.model_name)
        self.assertIsInstance(config, MarianConfig)


class TestMarian_EN_FR(MarianIntegrationTest):
    src = "en"
    tgt = "fr"
    src_text = [
        "I am a small frog.",
        "Now I can forget the 100 words of german that I know.",
    ]
    expected_text = [
        "Je suis une petite grenouille.",
        "Maintenant, je peux oublier les 100 mots d'allemand que je connais.",
    ]

    @slow
    def test_batch_generation_en_fr(self):
        self._assert_generated_batch_equal_expected()


class TestMarian_FR_EN(MarianIntegrationTest):
    src = "fr"
    tgt = "en"
    src_text = [
        "Donnez moi le micro.",
        "Tom et Mary étaient assis à une table.",  # Accents
    ]
    expected_text = [
        "Give me the microphone.",
        "Tom and Mary were sitting at a table.",
    ]

    @slow
    def test_batch_generation_fr_en(self):
        self._assert_generated_batch_equal_expected()


class TestMarian_RU_FR(MarianIntegrationTest):
    src = "ru"
    tgt = "fr"
    src_text = ["Он показал мне рукопись своей новой пьесы."]
195
    expected_text = ["Il m'a montré le manuscrit de sa nouvelle pièce."]
196

197
    @slow
198
199
200
201
202
203
204
    def test_batch_generation_ru_fr(self):
        self._assert_generated_batch_equal_expected()


class TestMarian_MT_EN(MarianIntegrationTest):
    src = "mt"
    tgt = "en"
205
206
    src_text = ["Billi messu b'mod ġentili, Ġesù fejjaq raġel li kien milqut bil - marda kerha tal - ġdiem."]
    expected_text = ["Touching gently, Jesus healed a man who was affected by the sad disease of leprosy."]
207

208
    @slow
209
210
211
212
    def test_batch_generation_mt_en(self):
        self._assert_generated_batch_equal_expected()


Sam Shleifer's avatar
Sam Shleifer committed
213
214
215
class TestMarian_en_zh(MarianIntegrationTest):
    src = "en"
    tgt = "zh"
216
217
218
219
220
221
222
223
    src_text = ["My name is Wolfgang and I live in Berlin"]
    expected_text = ["我叫沃尔夫冈 我住在柏林"]

    @slow
    def test_batch_generation_eng_zho(self):
        self._assert_generated_batch_equal_expected()


224
225
class TestMarian_en_ROMANCE(MarianIntegrationTest):
    """Multilingual on target side."""
226

227
228
229
230
231
232
233
234
235
236
237
238
    src = "en"
    tgt = "ROMANCE"
    src_text = [
        ">>fr<< Don't spend so much time watching TV.",
        ">>pt<< Your message has been sent.",
        ">>es<< He's two years older than me.",
    ]
    expected_text = [
        "Ne passez pas autant de temps à regarder la télé.",
        "A sua mensagem foi enviada.",
        "Es dos años más viejo que yo.",
    ]
239

240
241
    @slow
    def test_batch_generation_en_ROMANCE_multi(self):
242
243
        self._assert_generated_batch_equal_expected()

244
245
246
247
    def test_tokenizer_handles_empty(self):
        normalized = self.tokenizer.normalize("")
        self.assertIsInstance(normalized, str)
        with self.assertRaises(ValueError):
248
            self.tokenizer.prepare_seq2seq_batch([""])
249

250
    def test_pipeline(self):
251
252
        device = 0 if torch_device == "cuda" else -1
        pipeline = TranslationPipeline(self.model, self.tokenizer, framework="pt", device=device)
253
254
255
        output = pipeline(self.src_text)
        self.assertEqual(self.expected_text, [x["translation_text"] for x in output])

256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278

@require_torch
class TestConversionUtils(unittest.TestCase):
    def test_renaming_multilingual(self):
        old_names = [
            "opus-mt-cmn+cn+yue+ze_zh+zh_cn+zh_CN+zh_HK+zh_tw+zh_TW+zh_yue+zhs+zht+zh-fi",
            "opus-mt-cmn+cn-fi",  # no group
            "opus-mt-en-de",  # standard name
            "opus-mt-en-de",  # standard name
        ]
        expected = ["opus-mt-ZH-fi", "opus-mt-cmn_cn-fi", "opus-mt-en-de", "opus-mt-en-de"]
        self.assertListEqual(expected, [convert_opus_name_to_hf_name(x) for x in old_names])

    def test_undoing_renaming(self):
        hf_names = ["opus-mt-ZH-fi", "opus-mt-cmn_cn-fi", "opus-mt-en-de", "opus-mt-en-de"]
        converted_opus_names = [convert_hf_name_to_opus_name(x) for x in hf_names]
        expected_opus_names = [
            "cmn+cn+yue+ze_zh+zh_cn+zh_CN+zh_HK+zh_tw+zh_TW+zh_yue+zhs+zht+zh-fi",
            "cmn+cn-fi",
            "en-de",  # standard name
            "en-de",
        ]
        self.assertListEqual(expected_opus_names, converted_opus_names)