"vscode:/vscode.git/clone" did not exist on "ecd15667f36ddac60bb3d26c56b6d835e1d007ec"
modeling_test.py 5.32 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

19
import unittest
thomwolf's avatar
thomwolf committed
20
21
22
import json
import random

23
24
import torch

thomwolf's avatar
thomwolf committed
25
import modeling
thomwolf's avatar
thomwolf committed
26
27


28
class BertModelTest(unittest.TestCase):
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
    class BertModelTester(object):

        def __init__(self,
                     parent,
                     batch_size=13,
                     seq_length=7,
                     is_training=True,
                     use_input_mask=True,
                     use_token_type_ids=True,
                     vocab_size=99,
                     hidden_size=32,
                     num_hidden_layers=5,
                     num_attention_heads=4,
                     intermediate_size=37,
                     hidden_act="gelu",
                     hidden_dropout_prob=0.1,
                     attention_probs_dropout_prob=0.1,
                     max_position_embeddings=512,
                     type_vocab_size=16,
                     initializer_range=0.02,
                     scope=None):
            self.parent = parent
            self.batch_size = batch_size
            self.seq_length = seq_length
            self.is_training = is_training
            self.use_input_mask = use_input_mask
            self.use_token_type_ids = use_token_type_ids
            self.vocab_size = vocab_size
            self.hidden_size = hidden_size
            self.num_hidden_layers = num_hidden_layers
            self.num_attention_heads = num_attention_heads
            self.intermediate_size = intermediate_size
            self.hidden_act = hidden_act
            self.hidden_dropout_prob = hidden_dropout_prob
            self.attention_probs_dropout_prob = attention_probs_dropout_prob
            self.max_position_embeddings = max_position_embeddings
            self.type_vocab_size = type_vocab_size
            self.initializer_range = initializer_range
            self.scope = scope

        def create_model(self):
70
            input_ids = BertModelTest.ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
71
72
73

            input_mask = None
            if self.use_input_mask:
74
                input_mask = BertModelTest.ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
75
76
77

            token_type_ids = None
            if self.use_token_type_ids:
78
                token_type_ids = BertModelTest.ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
79
80
81
82
83
84
85
86
87
88
89
90
91
92

            config = modeling.BertConfig(
                vocab_size=self.vocab_size,
                hidden_size=self.hidden_size,
                num_hidden_layers=self.num_hidden_layers,
                num_attention_heads=self.num_attention_heads,
                intermediate_size=self.intermediate_size,
                hidden_act=self.hidden_act,
                hidden_dropout_prob=self.hidden_dropout_prob,
                attention_probs_dropout_prob=self.attention_probs_dropout_prob,
                max_position_embeddings=self.max_position_embeddings,
                type_vocab_size=self.type_vocab_size,
                initializer_range=self.initializer_range)

93
94
95
            model = modeling.BertModel(config=config)

            all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
96
97

            outputs = {
98
99
100
                "sequence_output": all_encoder_layers[-1],
                "pooled_output": pooled_output,
                "all_encoder_layers": all_encoder_layers,
101
102
103
104
            }
            return outputs

        def check_output(self, result):
105
106
            self.parent.assertListEqual(
                list(result["sequence_output"].size()),
107
108
                [self.batch_size, self.seq_length, self.hidden_size])

109
            self.parent.assertListEqual(list(result["pooled_output"].size()), [self.batch_size, self.hidden_size])
110
111
112
113
114
115
116
117
118
119
120

    def test_default(self):
        self.run_tester(BertModelTest.BertModelTester(self))

    def test_config_to_json_string(self):
        config = modeling.BertConfig(vocab_size=99, hidden_size=37)
        obj = json.loads(config.to_json_string())
        self.assertEqual(obj["vocab_size"], 99)
        self.assertEqual(obj["hidden_size"], 37)

    def run_tester(self, tester):
121
122
        output_result = tester.create_model()
        tester.check_output(output_result)
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

    @classmethod
    def ids_tensor(cls, shape, vocab_size, rng=None, name=None):
        """Creates a random int32 tensor of the shape within the vocab size."""
        if rng is None:
            rng = random.Random()

        total_dims = 1
        for dim in shape:
            total_dims *= dim

        values = []
        for _ in range(total_dims):
            values.append(rng.randint(0, vocab_size - 1))

thomwolf's avatar
thomwolf committed
138
        return torch.tensor(data=values, dtype=torch.long).view(shape).contiguous()
thomwolf's avatar
thomwolf committed
139
140
141


if __name__ == "__main__":
142
    unittest.main()