run_summarization.py 27.3 KB
Newer Older
1
#!/usr/bin/env python
2
# coding=utf-8
3
# Copyright 2021 The HuggingFace Team. All rights reserved.
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for sequence to sequence.
"""
# You can also adapt this script on your own sequence to sequence task. Pointers for this are left as comments.

import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional

27
import datasets
28
import nltk  # Here to have a nice missing dependency error message early on
29
30
31
32
import numpy as np
from datasets import load_dataset, load_metric

import transformers
33
from filelock import FileLock
34
35
36
37
38
39
40
41
42
43
from transformers import (
    AutoConfig,
    AutoModelForSeq2SeqLM,
    AutoTokenizer,
    DataCollatorForSeq2Seq,
    HfArgumentParser,
    Seq2SeqTrainer,
    Seq2SeqTrainingArguments,
    set_seed,
)
44
from transformers.file_utils import is_offline_mode
45
from transformers.trainer_utils import get_last_checkpoint
46
from transformers.utils import check_min_version
47
from transformers.utils.versions import require_version
48
49


50
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Lysandre's avatar
Lysandre committed
51
check_min_version("4.11.0.dev0")
Sylvain Gugger's avatar
Sylvain Gugger committed
52

53
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/summarization/requirements.txt")
54

55
56
logger = logging.getLogger(__name__)

57
58
try:
    nltk.data.find("tokenizers/punkt")
Stas Bekman's avatar
Stas Bekman committed
59
except (LookupError, OSError):
60
61
62
63
64
65
66
    if is_offline_mode():
        raise LookupError(
            "Offline mode: run this script without TRANSFORMERS_OFFLINE first to download nltk data files"
        )
    with FileLock(".lock") as lock:
        nltk.download("punkt", quiet=True)

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """

    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
        default=None,
        metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
    )
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
    )
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    use_auth_token: bool = field(
        default=False,
        metadata={
            "help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
            "with private models)."
        },
    )
102
103
104
105
106
107
108
    resize_position_embeddings: Optional[bool] = field(
        default=None,
        metadata={
            "help": "Whether to automatically resize the position embeddings if `max_source_length` exceeds "
            "the model's position embeddings."
        },
    )
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130


@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
    text_column: Optional[str] = field(
        default=None,
        metadata={"help": "The name of the column in the datasets containing the full texts (for summarization)."},
    )
    summary_column: Optional[str] = field(
        default=None,
        metadata={"help": "The name of the column in the datasets containing the summaries (for summarization)."},
    )
131
132
133
    train_file: Optional[str] = field(
        default=None, metadata={"help": "The input training data file (a jsonlines or csv file)."}
    )
134
135
    validation_file: Optional[str] = field(
        default=None,
136
        metadata={
137
            "help": "An optional input evaluation data file to evaluate the metrics (rouge) on "
138
139
140
141
142
143
            "(a jsonlines or csv file)."
        },
    )
    test_file: Optional[str] = field(
        default=None,
        metadata={
144
            "help": "An optional input test data file to evaluate the metrics (rouge) on " "(a jsonlines or csv file)."
145
        },
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
    )
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
    max_source_length: Optional[int] = field(
        default=1024,
        metadata={
            "help": "The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded."
        },
    )
    max_target_length: Optional[int] = field(
        default=128,
        metadata={
            "help": "The maximum total sequence length for target text after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded."
        },
    )
    val_max_target_length: Optional[int] = field(
169
        default=None,
170
171
        metadata={
            "help": "The maximum total sequence length for validation target text after tokenization. Sequences longer "
172
            "than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`."
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
            "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used "
            "during ``evaluate`` and ``predict``."
        },
    )
    pad_to_max_length: bool = field(
        default=False,
        metadata={
            "help": "Whether to pad all samples to model maximum sentence length. "
            "If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
            "efficient on GPU but very bad for TPU."
        },
    )
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": "For debugging purposes or quicker training, truncate the number of training examples to this "
            "value if set."
        },
    )
192
    max_eval_samples: Optional[int] = field(
193
194
        default=None,
        metadata={
195
            "help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
196
197
198
            "value if set."
        },
    )
199
    max_predict_samples: Optional[int] = field(
200
201
        default=None,
        metadata={
202
            "help": "For debugging purposes or quicker training, truncate the number of prediction examples to this "
203
204
205
206
207
208
209
210
211
212
            "value if set."
        },
    )
    num_beams: Optional[int] = field(
        default=None,
        metadata={
            "help": "Number of beams to use for evaluation. This argument will be passed to ``model.generate``, "
            "which is used during ``evaluate`` and ``predict``."
        },
    )
213
214
215
216
217
218
    ignore_pad_token_for_loss: bool = field(
        default=True,
        metadata={
            "help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not."
        },
    )
219
220
221
    source_prefix: Optional[str] = field(
        default=None, metadata={"help": "A prefix to add before every source text (useful for T5 models)."}
    )
222
223
224
225
226
227
228
229
230
231
232

    def __post_init__(self):
        if self.dataset_name is None and self.train_file is None and self.validation_file is None:
            raise ValueError("Need either a dataset name or a training/validation file.")
        else:
            if self.train_file is not None:
                extension = self.train_file.split(".")[-1]
                assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
            if self.validation_file is not None:
                extension = self.validation_file.split(".")[-1]
                assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
233
234
        if self.val_max_target_length is None:
            self.val_max_target_length = self.max_target_length
235
236
237


summarization_name_mapping = {
238
239
    "amazon_reviews_multi": ("review_body", "review_title"),
    "big_patent": ("description", "abstract"),
240
    "cnn_dailymail": ("article", "highlights"),
241
242
243
244
245
246
    "orange_sum": ("text", "summary"),
    "pn_summary": ("article", "summary"),
    "psc": ("extract_text", "summary_text"),
    "samsum": ("dialogue", "summary"),
    "thaisum": ("body", "summary"),
    "xglue": ("news_body", "news_title"),
247
    "xsum": ("document", "summary"),
248
    "wiki_summary": ("article", "highlights"),
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
}


def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

265
266
    # Setup logging
    logging.basicConfig(
267
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
268
269
270
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )
271
272
273
274
275
276
    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()
277
278
279
280
281
282
283
284

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )
    logger.info(f"Training/evaluation parameters {training_args}")

285
286
287
288
289
290
291
292
293
294
295
296
    if data_args.source_prefix is None and model_args.model_name_or_path in [
        "t5-small",
        "t5-base",
        "t5-large",
        "t5-3b",
        "t5-11b",
    ]:
        logger.warning(
            "You're running a t5 model but didn't provide a source prefix, which is the expected, e.g. with "
            "`--source_prefix 'summarize: ' `"
        )

297
298
299
300
301
302
303
304
305
    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
306
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
307
308
309
310
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )
311
312
313
314
315
316
317
318

    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
319
320
    # For CSV/JSON files this script will use the first column for the full texts and the second column for the
    # summaries (unless you specify column names for this with the `text_column` and `summary_column` arguments).
321
322
323
324
325
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
326
327
328
        raw_datasets = load_dataset(
            data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir
        )
329
330
331
332
333
334
335
336
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
            extension = data_args.train_file.split(".")[-1]
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
            extension = data_args.validation_file.split(".")[-1]
337
338
339
        if data_args.test_file is not None:
            data_files["test"] = data_args.test_file
            extension = data_args.test_file.split(".")[-1]
340
        raw_datasets = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir)
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    config = AutoConfig.from_pretrained(
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        use_fast=model_args.use_fast_tokenizer,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )
    model = AutoModelForSeq2SeqLM.from_pretrained(
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
        config=config,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )

Suraj Patil's avatar
Suraj Patil committed
371
372
    model.resize_token_embeddings(len(tokenizer))

373
374
375
    if model.config.decoder_start_token_id is None:
        raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")

376
377
378
379
380
381
    if (
        hasattr(model.config, "max_position_embeddings")
        and model.config.max_position_embeddings < data_args.max_source_length
    ):
        if model_args.resize_position_embeddings is None:
            logger.warning(
Suraj Patil's avatar
Suraj Patil committed
382
                f"Increasing the model's number of position embedding vectors from {model.config.max_position_embeddings} "
383
384
385
386
387
388
389
390
391
392
393
394
                f"to {data_args.max_source_length}."
            )
            model.resize_position_embeddings(data_args.max_source_length)
        elif model_args.resize_position_embeddings:
            model.resize_position_embeddings(data_args.max_source_length)
        else:
            raise ValueError(
                f"`--max_source_length` is set to {data_args.max_source_length}, but the model only has {model.config.max_position_embeddings}"
                f" position encodings. Consider either reducing `--max_source_length` to {model.config.max_position_embeddings} or to automatically "
                "resize the model's position encodings by passing `--resize_position_embeddings`."
            )

395
    prefix = data_args.source_prefix if data_args.source_prefix is not None else ""
396

397
398
399
    # Preprocessing the datasets.
    # We need to tokenize inputs and targets.
    if training_args.do_train:
400
        column_names = raw_datasets["train"].column_names
401
    elif training_args.do_eval:
402
        column_names = raw_datasets["validation"].column_names
403
    elif training_args.do_predict:
404
        column_names = raw_datasets["test"].column_names
405
406
407
    else:
        logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.")
        return
408

409
410
411
412
    # Get the column names for input/target.
    dataset_columns = summarization_name_mapping.get(data_args.dataset_name, None)
    if data_args.text_column is None:
        text_column = dataset_columns[0] if dataset_columns is not None else column_names[0]
413
    else:
414
415
416
417
418
419
420
421
422
423
424
425
426
        text_column = data_args.text_column
        if text_column not in column_names:
            raise ValueError(
                f"--text_column' value '{data_args.text_column}' needs to be one of: {', '.join(column_names)}"
            )
    if data_args.summary_column is None:
        summary_column = dataset_columns[1] if dataset_columns is not None else column_names[1]
    else:
        summary_column = data_args.summary_column
        if summary_column not in column_names:
            raise ValueError(
                f"--summary_column' value '{data_args.summary_column}' needs to be one of: {', '.join(column_names)}"
            )
427
428
429
430
431

    # Temporarily set max_target_length for training.
    max_target_length = data_args.max_target_length
    padding = "max_length" if data_args.pad_to_max_length else False

432
    if training_args.label_smoothing_factor > 0 and not hasattr(model, "prepare_decoder_input_ids_from_labels"):
433
        logger.warning(
434
435
436
437
            "label_smoothing is enabled but the `prepare_decoder_input_ids_from_labels` method is not defined for"
            f"`{model.__class__.__name__}`. This will lead to loss being calculated twice and will take up more memory"
        )

438
    def preprocess_function(examples):
439
440
        inputs = examples[text_column]
        targets = examples[summary_column]
441
        inputs = [prefix + inp for inp in inputs]
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
        model_inputs = tokenizer(inputs, max_length=data_args.max_source_length, padding=padding, truncation=True)

        # Setup the tokenizer for targets
        with tokenizer.as_target_tokenizer():
            labels = tokenizer(targets, max_length=max_target_length, padding=padding, truncation=True)

        # If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore
        # padding in the loss.
        if padding == "max_length" and data_args.ignore_pad_token_for_loss:
            labels["input_ids"] = [
                [(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"]
            ]

        model_inputs["labels"] = labels["input_ids"]
        return model_inputs

    if training_args.do_train:
459
        if "train" not in raw_datasets:
460
            raise ValueError("--do_train requires a train dataset")
461
        train_dataset = raw_datasets["train"]
462
463
        if data_args.max_train_samples is not None:
            train_dataset = train_dataset.select(range(data_args.max_train_samples))
464
465
466
467
468
469
470
471
472
        with training_args.main_process_first(desc="train dataset map pre-processing"):
            train_dataset = train_dataset.map(
                preprocess_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on train dataset",
            )
473
474
475

    if training_args.do_eval:
        max_target_length = data_args.val_max_target_length
476
        if "validation" not in raw_datasets:
477
            raise ValueError("--do_eval requires a validation dataset")
478
        eval_dataset = raw_datasets["validation"]
479
480
        if data_args.max_eval_samples is not None:
            eval_dataset = eval_dataset.select(range(data_args.max_eval_samples))
481
482
483
484
485
486
487
488
489
        with training_args.main_process_first(desc="validation dataset map pre-processing"):
            eval_dataset = eval_dataset.map(
                preprocess_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on validation dataset",
            )
490

491
492
    if training_args.do_predict:
        max_target_length = data_args.val_max_target_length
493
        if "test" not in raw_datasets:
494
            raise ValueError("--do_predict requires a test dataset")
495
        predict_dataset = raw_datasets["test"]
496
497
        if data_args.max_predict_samples is not None:
            predict_dataset = predict_dataset.select(range(data_args.max_predict_samples))
498
499
500
501
502
503
504
505
506
        with training_args.main_process_first(desc="prediction dataset map pre-processing"):
            predict_dataset = predict_dataset.map(
                preprocess_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on prediction dataset",
            )
507

508
509
    # Data collator
    label_pad_token_id = -100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id
510
511
512
513
514
515
    data_collator = DataCollatorForSeq2Seq(
        tokenizer,
        model=model,
        label_pad_token_id=label_pad_token_id,
        pad_to_multiple_of=8 if training_args.fp16 else None,
    )
516
517

    # Metric
518
    metric = load_metric("rouge")
519

520
521
522
523
524
    def postprocess_text(preds, labels):
        preds = [pred.strip() for pred in preds]
        labels = [label.strip() for label in labels]

        # rougeLSum expects newline after each sentence
525
526
        preds = ["\n".join(nltk.sent_tokenize(pred)) for pred in preds]
        labels = ["\n".join(nltk.sent_tokenize(label)) for label in labels]
527
528
529

        return preds, labels

530
531
532
533
534
535
536
537
538
539
540
    def compute_metrics(eval_preds):
        preds, labels = eval_preds
        if isinstance(preds, tuple):
            preds = preds[0]
        decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
        if data_args.ignore_pad_token_for_loss:
            # Replace -100 in the labels as we can't decode them.
            labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
        decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)

        # Some simple post-processing
541
        decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)
542

543
544
545
        result = metric.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True)
        # Extract a few results from ROUGE
        result = {key: value.mid.fmeasure * 100 for key, value in result.items()}
546
547
548

        prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]
        result["gen_len"] = np.mean(prediction_lens)
549
        result = {k: round(v, 4) for k, v in result.items()}
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
        return result

    # Initialize our Trainer
    trainer = Seq2SeqTrainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
        tokenizer=tokenizer,
        data_collator=data_collator,
        compute_metrics=compute_metrics if training_args.predict_with_generate else None,
    )

    # Training
    if training_args.do_train:
565
566
567
568
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
569
570
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
571
572
        trainer.save_model()  # Saves the tokenizer too for easy upload

573
574
575
576
577
        metrics = train_result.metrics
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))
578

579
580
581
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()
582
583

    # Evaluation
584
    results = {}
585
586
587
588
589
590
    max_length = (
        training_args.generation_max_length
        if training_args.generation_max_length is not None
        else data_args.val_max_target_length
    )
    num_beams = data_args.num_beams if data_args.num_beams is not None else training_args.generation_num_beams
591
592
    if training_args.do_eval:
        logger.info("*** Evaluate ***")
593
        metrics = trainer.evaluate(max_length=max_length, num_beams=num_beams, metric_key_prefix="eval")
594
595
        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
596

597
598
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)
599

600
    if training_args.do_predict:
601
        logger.info("*** Predict ***")
602

603
        predict_results = trainer.predict(
604
            predict_dataset, metric_key_prefix="predict", max_length=max_length, num_beams=num_beams
605
        )
606
607
608
609
610
        metrics = predict_results.metrics
        max_predict_samples = (
            data_args.max_predict_samples if data_args.max_predict_samples is not None else len(predict_dataset)
        )
        metrics["predict_samples"] = min(max_predict_samples, len(predict_dataset))
611

612
613
        trainer.log_metrics("predict", metrics)
        trainer.save_metrics("predict", metrics)
614

615
        if trainer.is_world_process_zero():
616
            if training_args.predict_with_generate:
617
618
                predictions = tokenizer.batch_decode(
                    predict_results.predictions, skip_special_tokens=True, clean_up_tokenization_spaces=True
619
                )
620
621
622
623
                predictions = [pred.strip() for pred in predictions]
                output_prediction_file = os.path.join(training_args.output_dir, "generated_predictions.txt")
                with open(output_prediction_file, "w") as writer:
                    writer.write("\n".join(predictions))
624

Sylvain Gugger's avatar
Sylvain Gugger committed
625
    if training_args.push_to_hub:
Sylvain Gugger's avatar
Sylvain Gugger committed
626
        kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "summarization"}
Sylvain Gugger's avatar
Sylvain Gugger committed
627
628
629
630
631
632
633
634
635
        if data_args.dataset_name is not None:
            kwargs["dataset_tags"] = data_args.dataset_name
            if data_args.dataset_config_name is not None:
                kwargs["dataset_args"] = data_args.dataset_config_name
                kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
            else:
                kwargs["dataset"] = data_args.dataset_name

        trainer.push_to_hub(**kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
636

637
638
    return results

639
640
641
642
643
644
645
646

def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


if __name__ == "__main__":
    main()