modeling_xlm.py 45.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
# coding=utf-8
# Copyright 2019-present, Facebook, Inc and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch XLM model.
"""
from __future__ import absolute_import, division, print_function, unicode_literals

import json
import logging
import math
import sys
from io import open

import itertools
import numpy as np

import torch
from torch import nn
from torch.nn import functional as F
from torch.nn import CrossEntropyLoss, MSELoss

thomwolf's avatar
thomwolf committed
33
from .modeling_utils import (PretrainedConfig, PreTrainedModel, add_start_docstrings,
34
                             prune_linear_layer, SequenceSummary, SQuADHead)
35
36
37

logger = logging.getLogger(__name__)

38
XLM_PRETRAINED_MODEL_ARCHIVE_MAP = {
39
    'xlm-mlm-en-2048': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-en-2048-pytorch_model.bin",
40
41
42
43
44
    'xlm-mlm-ende-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-ende-1024-pytorch_model.bin",
    'xlm-mlm-enfr-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-enfr-1024-pytorch_model.bin",
    'xlm-mlm-enro-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-enro-1024-pytorch_model.bin",
    'xlm-mlm-tlm-xnli15-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-tlm-xnli15-1024-pytorch_model.bin",
    'xlm-mlm-xnli15-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-xnli15-1024-pytorch_model.bin",
45
46
    'xlm-clm-enfr-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-clm-enfr-1024-pytorch_model.bin",
    'xlm-clm-ende-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-clm-ende-1024-pytorch_model.bin",
47
48
    'xlm-mlm-17-1280': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-17-1280-pytorch_model.json",
    'xlm-mlm-100-1280': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-17-1280-pytorch_model.json",
49
}
50
XLM_PRETRAINED_CONFIG_ARCHIVE_MAP = {
51
    'xlm-mlm-en-2048': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-en-2048-config.json",
52
    'xlm-mlm-ende-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-ende-1024-config.json",
thomwolf's avatar
thomwolf committed
53
    'xlm-mlm-enfr-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-enfr-1024-config.json",
54
55
56
57
58
    'xlm-mlm-enro-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-enro-1024-config.json",
    'xlm-mlm-tlm-xnli15-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-tlm-xnli15-1024-config.json",
    'xlm-mlm-xnli15-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-xnli15-1024-config.json",
    'xlm-clm-enfr-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-clm-enfr-1024-config.json",
    'xlm-clm-ende-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-clm-ende-1024-config.json",
59
60
    'xlm-mlm-17-1280': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-17-1280-config.json",
    'xlm-mlm-100-1280': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-17-1280-config.json",
61
62
63
64
65
}


class XLMConfig(PretrainedConfig):
    """Configuration class to store the configuration of a `XLMModel`.
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

    Args:
        vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `XLMModel`.
        d_model: Size of the encoder layers and the pooler layer.
        n_layer: Number of hidden layers in the Transformer encoder.
        n_head: Number of attention heads for each attention layer in
            the Transformer encoder.
        d_inner: The size of the "intermediate" (i.e., feed-forward)
            layer in the Transformer encoder.
        ff_activation: The non-linear activation function (function or string) in the
            encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
        untie_r: untie relative position biases
        attn_type: 'bi' for XLM, 'uni' for Transformer-XL

        dropout: The dropout probabilitiy for all fully connected
            layers in the embeddings, encoder, and pooler.
        dropatt: The dropout ratio for the attention
            probabilities.
        max_position_embeddings: The maximum sequence length that this model might
            ever be used with. Typically set this to something large just in case
            (e.g., 512 or 1024 or 2048).
        initializer_range: The sttdev of the truncated_normal_initializer for
            initializing all weight matrices.
        layer_norm_eps: The epsilon used by LayerNorm.

        dropout: float, dropout rate.
        dropatt: float, dropout rate on attention probabilities.
        init: str, the initialization scheme, either "normal" or "uniform".
        init_range: float, initialize the parameters with a uniform distribution
            in [-init_range, init_range]. Only effective when init="uniform".
        init_std: float, initialize the parameters with a normal distribution
            with mean 0 and stddev init_std. Only effective when init="normal".
        mem_len: int, the number of tokens to cache.
        reuse_len: int, the number of tokens in the currect batch to be cached
            and reused in the future.
        bi_data: bool, whether to use bidirectional input pipeline.
            Usually set to True during pretraining and False during finetuning.
        clamp_len: int, clamp all relative distances larger than clamp_len.
            -1 means no clamping.
        same_length: bool, whether to use the same attention length for each token.
106
    """
107
    pretrained_config_archive_map = XLM_PRETRAINED_CONFIG_ARCHIVE_MAP
108
109

    def __init__(self,
thomwolf's avatar
thomwolf committed
110
                 vocab_size_or_config_json_file=30145,
thomwolf's avatar
xlm  
thomwolf committed
111
112
113
114
115
116
117
                 emb_dim=2048,
                 n_layers=12,
                 n_heads=16,
                 dropout=0.1,
                 attention_dropout=0.1,
                 gelu_activation=True,
                 sinusoidal_embeddings=False,
thomwolf's avatar
thomwolf committed
118
                 causal=False,
thomwolf's avatar
xlm  
thomwolf committed
119
120
                 asm=False,
                 n_langs=1,
Shijie Wu's avatar
Shijie Wu committed
121
                 use_lang_emb=True,
122
                 max_position_embeddings=512,
thomwolf's avatar
thomwolf committed
123
                 embed_init_std=2048 ** -0.5,
thomwolf's avatar
thomwolf committed
124
                 layer_norm_eps=1e-12,
thomwolf's avatar
thomwolf committed
125
126
127
128
129
130
131
                 init_std=0.02,
                 bos_index=0,
                 eos_index=1,
                 pad_index=2,
                 unk_index=3,
                 mask_index=5,
                 is_encoder=True,
thomwolf's avatar
thomwolf committed
132
133
134

                 finetuning_task=None,
                 num_labels=2,
135
                 summary_type='first',
thomwolf's avatar
thomwolf committed
136
                 summary_use_proj=True,
137
138
139
                 summary_activation=None,
                 summary_proj_to_labels=True,
                 summary_first_dropout=0.1,
thomwolf's avatar
thomwolf committed
140
141
                 start_n_top=5,
                 end_n_top=5,
thomwolf's avatar
xlm  
thomwolf committed
142
                 **kwargs):
143
144
        """Constructs XLMConfig.
        """
thomwolf's avatar
xlm  
thomwolf committed
145
146
        super(XLMConfig, self).__init__(**kwargs)

147
148
149
150
151
152
153
        if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
                        and isinstance(vocab_size_or_config_json_file, unicode)):
            with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader:
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
thomwolf's avatar
xlm  
thomwolf committed
154
155
156
157
158
159
160
161
            self.n_words = vocab_size_or_config_json_file
            self.emb_dim = emb_dim
            self.n_layers = n_layers
            self.n_heads = n_heads
            self.dropout = dropout
            self.attention_dropout = attention_dropout
            self.gelu_activation = gelu_activation
            self.sinusoidal_embeddings = sinusoidal_embeddings
thomwolf's avatar
thomwolf committed
162
            self.causal = causal
thomwolf's avatar
xlm  
thomwolf committed
163
164
            self.asm = asm
            self.n_langs = n_langs
Shijie Wu's avatar
Shijie Wu committed
165
            self.use_lang_emb = use_lang_emb
thomwolf's avatar
thomwolf committed
166
            self.layer_norm_eps = layer_norm_eps
thomwolf's avatar
thomwolf committed
167
168
169
170
171
172
            self.bos_index = bos_index
            self.eos_index = eos_index
            self.pad_index = pad_index
            self.unk_index = unk_index
            self.mask_index = mask_index
            self.is_encoder = is_encoder
173
            self.max_position_embeddings = max_position_embeddings
thomwolf's avatar
thomwolf committed
174
175
            self.embed_init_std = embed_init_std
            self.init_std = init_std
thomwolf's avatar
thomwolf committed
176
177
178
179
180
            self.finetuning_task = finetuning_task
            self.num_labels = num_labels
            self.summary_type = summary_type
            self.summary_use_proj = summary_use_proj
            self.summary_activation = summary_activation
181
182
            self.summary_proj_to_labels = summary_proj_to_labels
            self.summary_first_dropout = summary_first_dropout
thomwolf's avatar
thomwolf committed
183
184
            self.start_n_top = start_n_top
            self.end_n_top = end_n_top
185
186
        else:
            raise ValueError("First argument must be either a vocabulary size (int)"
VictorSanh's avatar
VictorSanh committed
187
                             " or the path to a pretrained model config file (str)")
188

thomwolf's avatar
xlm  
thomwolf committed
189
    @property
thomwolf's avatar
thomwolf committed
190
191
    def vocab_size(self):
        return self.n_words
thomwolf's avatar
xlm  
thomwolf committed
192

thomwolf's avatar
thomwolf committed
193
194
195
196
    @vocab_size.setter
    def vocab_size(self, value):
        self.n_words = value

thomwolf's avatar
xlm  
thomwolf committed
197
198
199
200
201
202
203
204
205
206
207
208
    @property
    def hidden_size(self):
        return self.emb_dim

    @property
    def num_attention_heads(self):
        return self.n_heads

    @property
    def num_hidden_layers(self):
        return self.n_layers

209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225

def create_sinusoidal_embeddings(n_pos, dim, out):
    position_enc = np.array([
        [pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)]
        for pos in range(n_pos)
    ])
    out[:, 0::2] = torch.FloatTensor(np.sin(position_enc[:, 0::2]))
    out[:, 1::2] = torch.FloatTensor(np.cos(position_enc[:, 1::2]))
    out.detach_()
    out.requires_grad = False


def gelu(x):
    """
    GELU activation
    https://arxiv.org/abs/1606.08415
    https://github.com/huggingface/pytorch-openai-transformer-lm/blob/master/model_pytorch.py#L14
thomwolf's avatar
thomwolf committed
226
    https://github.com/huggingface/pytorch-transformers/blob/master/modeling.py
227
228
229
230
231
    """
    # return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
    return 0.5 * x * (1.0 + torch.erf(x / math.sqrt(2.0)))


thomwolf's avatar
thomwolf committed
232
def get_masks(slen, lengths, causal, padding_mask=None):
233
234
235
236
    """
    Generate hidden states mask, and optionally an attention mask.
    """
    bs = lengths.size(0)
thomwolf's avatar
thomwolf committed
237
238
239
240
241
242
    if padding_mask is not None:
        mask = padding_mask
    else:
        assert lengths.max().item() <= slen
        alen = torch.arange(slen, dtype=torch.long, device=lengths.device)
        mask = alen < lengths[:, None]
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260

    # attention mask is the same as mask, or triangular inferior attention (causal)
    if causal:
        attn_mask = alen[None, None, :].repeat(bs, slen, 1) <= alen[None, :, None]
    else:
        attn_mask = mask

    # sanity check
    assert mask.size() == (bs, slen)
    assert causal is False or attn_mask.size() == (bs, slen, slen)

    return mask, attn_mask


class MultiHeadAttention(nn.Module):

    NEW_ID = itertools.count()

thomwolf's avatar
thomwolf committed
261
    def __init__(self, n_heads, dim, config):
thomwolf's avatar
thomwolf committed
262
        super(MultiHeadAttention, self).__init__()
263
        self.layer_id = next(MultiHeadAttention.NEW_ID)
thomwolf's avatar
thomwolf committed
264
        self.output_attentions = config.output_attentions
265
266
        self.dim = dim
        self.n_heads = n_heads
thomwolf's avatar
thomwolf committed
267
        self.dropout = config.attention_dropout
268
269
        assert self.dim % self.n_heads == 0

thomwolf's avatar
thomwolf committed
270
271
272
273
        self.q_lin = nn.Linear(dim, dim)
        self.k_lin = nn.Linear(dim, dim)
        self.v_lin = nn.Linear(dim, dim)
        self.out_lin = nn.Linear(dim, dim)
274

thomwolf's avatar
thomwolf committed
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
    def prune_heads(self, heads):
        attention_head_size = self.dim // self.n_heads
        if len(heads) == 0:
            return
        mask = torch.ones(self.n_heads, attention_head_size)
        for head in heads:
            mask[head] = 0
        mask = mask.view(-1).contiguous().eq(1)
        index = torch.arange(len(mask))[mask].long()
        # Prune linear layers
        self.q_lin = prune_linear_layer(self.q_lin, index)
        self.k_lin = prune_linear_layer(self.k_lin, index)
        self.v_lin = prune_linear_layer(self.v_lin, index)
        self.out_lin = prune_linear_layer(self.out_lin, index, dim=1)
        # Update hyper params
        self.n_heads = self.n_heads - len(heads)
        self.dim = attention_head_size * self.n_heads

thomwolf's avatar
thomwolf committed
293
    def forward(self, input, mask, kv=None, cache=None, head_mask=None):
294
295
296
297
298
299
300
301
302
303
        """
        Self-attention (if kv is None) or attention over source sentence (provided by kv).
        """
        # Input is (bs, qlen, dim)
        # Mask is (bs, klen) (non-causal) or (bs, klen, klen)
        bs, qlen, dim = input.size()
        if kv is None:
            klen = qlen if cache is None else cache['slen'] + qlen
        else:
            klen = kv.size(1)
thomwolf's avatar
thomwolf committed
304
        # assert dim == self.dim, 'Dimensions do not match: %s input vs %s configured' % (dim, self.dim)
305
        n_heads = self.n_heads
thomwolf's avatar
thomwolf committed
306
        dim_per_head = self.dim // n_heads
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
        mask_reshape = (bs, 1, qlen, klen) if mask.dim() == 3 else (bs, 1, 1, klen)

        def shape(x):
            """  projection """
            return x.view(bs, -1, self.n_heads, dim_per_head).transpose(1, 2)

        def unshape(x):
            """  compute context """
            return x.transpose(1, 2).contiguous().view(bs, -1, self.n_heads * dim_per_head)

        q = shape(self.q_lin(input))                                          # (bs, n_heads, qlen, dim_per_head)
        if kv is None:
            k = shape(self.k_lin(input))                                      # (bs, n_heads, qlen, dim_per_head)
            v = shape(self.v_lin(input))                                      # (bs, n_heads, qlen, dim_per_head)
        elif cache is None or self.layer_id not in cache:
            k = v = kv
            k = shape(self.k_lin(k))                                          # (bs, n_heads, qlen, dim_per_head)
            v = shape(self.v_lin(v))                                          # (bs, n_heads, qlen, dim_per_head)

        if cache is not None:
            if self.layer_id in cache:
                if kv is None:
                    k_, v_ = cache[self.layer_id]
                    k = torch.cat([k_, k], dim=2)                             # (bs, n_heads, klen, dim_per_head)
                    v = torch.cat([v_, v], dim=2)                             # (bs, n_heads, klen, dim_per_head)
                else:
                    k, v = cache[self.layer_id]
            cache[self.layer_id] = (k, v)

        q = q / math.sqrt(dim_per_head)                                       # (bs, n_heads, qlen, dim_per_head)
        scores = torch.matmul(q, k.transpose(2, 3))                           # (bs, n_heads, qlen, klen)
        mask = (mask == 0).view(mask_reshape).expand_as(scores)               # (bs, n_heads, qlen, klen)
        scores.masked_fill_(mask, -float('inf'))                              # (bs, n_heads, qlen, klen)

        weights = F.softmax(scores.float(), dim=-1).type_as(scores)           # (bs, n_heads, qlen, klen)
        weights = F.dropout(weights, p=self.dropout, training=self.training)  # (bs, n_heads, qlen, klen)
thomwolf's avatar
thomwolf committed
343
344
345
346
347

        # Mask heads if we want to
        if head_mask is not None:
            weights = weights * head_mask

348
349
350
        context = torch.matmul(weights, v)                                    # (bs, n_heads, qlen, dim_per_head)
        context = unshape(context)                                            # (bs, qlen, dim)

thomwolf's avatar
xlm  
thomwolf committed
351
352
        outputs = (self.out_lin(context),)
        if self.output_attentions:
thomwolf's avatar
thomwolf committed
353
            outputs = outputs + (weights,)
thomwolf's avatar
xlm  
thomwolf committed
354
        return outputs
355
356
357
358


class TransformerFFN(nn.Module):

thomwolf's avatar
thomwolf committed
359
    def __init__(self, in_dim, dim_hidden, out_dim, config):
thomwolf's avatar
thomwolf committed
360
        super(TransformerFFN, self).__init__()
thomwolf's avatar
thomwolf committed
361
        self.dropout = config.dropout
thomwolf's avatar
thomwolf committed
362
363
        self.lin1 = nn.Linear(in_dim, dim_hidden)
        self.lin2 = nn.Linear(dim_hidden, out_dim)
thomwolf's avatar
thomwolf committed
364
        self.act = gelu if config.gelu_activation else F.relu
365
366
367
368
369
370
371
372
373

    def forward(self, input):
        x = self.lin1(input)
        x = self.act(x)
        x = self.lin2(x)
        x = F.dropout(x, p=self.dropout, training=self.training)
        return x


374
class XLMPreTrainedModel(PreTrainedModel):
375
376
377
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
378
    config_class = XLMConfig
379
    pretrained_model_archive_map = XLM_PRETRAINED_MODEL_ARCHIVE_MAP
380
    load_tf_weights = None
thomwolf's avatar
thomwolf committed
381
    base_model_prefix = "transformer"
382
383
384

    def __init__(self, *inputs, **kwargs):
        super(XLMPreTrainedModel, self).__init__(*inputs, **kwargs)
385
386

    def init_weights(self, module):
thomwolf's avatar
thomwolf committed
387
388
389
390
391
392
393
394
395
        """ Initialize the weights. """
        if isinstance(module, nn.Embedding):
            if self.config is not None and self.config.embed_init_std is not None:
                nn.init.normal_(module.weight, mean=0, std=self.config.embed_init_std)
        if isinstance(module, nn.Linear):
            if self.config is not None and self.config.init_std is not None:
                nn.init.normal_(module.weight, mean=0, std=self.config.init_std)
                if hasattr(module, 'bias') and module.bias is not None:
                    nn.init.constant_(module.bias, 0.)
thomwolf's avatar
thomwolf committed
396
        if isinstance(module, nn.LayerNorm):
397
398
399
400
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)


thomwolf's avatar
thomwolf committed
401
402
403
XLM_START_DOCSTRING = r"""    The XLM model was proposed in
    `Cross-lingual Language Model Pretraining`_
    by Guillaume Lample*, Alexis Conneau*. It's a transformer pre-trained using one of the following objectives:
404

thomwolf's avatar
thomwolf committed
405
406
407
        - a causal language modeling (CLM) objective (next token prediction),
        - a masked language modeling (MLM) objective (Bert-like), or
        - a Translation Language Modeling (TLM) object (extension of Bert's MLM to multiple language inputs)
thomwolf's avatar
thomwolf committed
408

thomwolf's avatar
thomwolf committed
409
    Original code can be found `here`_.
thomwolf's avatar
thomwolf committed
410

thomwolf's avatar
thomwolf committed
411
412
    This model is a PyTorch `torch.nn.Module`_ sub-class. Use it as a regular PyTorch Module and
    refer to the PyTorch documentation for all matter related to general usage and behavior.
thomwolf's avatar
thomwolf committed
413

thomwolf's avatar
thomwolf committed
414
415
    .. _`Cross-lingual Language Model Pretraining`:
        https://arxiv.org/abs/1901.07291
thomwolf's avatar
thomwolf committed
416

thomwolf's avatar
thomwolf committed
417
418
    .. _`torch.nn.Module`:
        https://pytorch.org/docs/stable/nn.html#module
thomwolf's avatar
thomwolf committed
419

thomwolf's avatar
thomwolf committed
420
421
422
423
424
    .. _`here`:
        https://github.com/facebookresearch/XLM

    Parameters:
        config (:class:`~pytorch_transformers.XLMConfig`): Model configuration class with all the parameters of the model.
425
426
            Initializing with a config file does not load the weights associated with the model, only the configuration.
            Check out the :meth:`~pytorch_transformers.PreTrainedModel.from_pretrained` method to load the model weights.
thomwolf's avatar
thomwolf committed
427
"""
428

thomwolf's avatar
thomwolf committed
429
430
431
432
XLM_INPUTS_DOCSTRING = r"""
    Inputs:
        **input_ids**: ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Indices of input sequence tokens in the vocabulary.
thomwolf's avatar
thomwolf committed
433
434
435
436

            XLM is a model with absolute position embeddings so it's usually advised to pad the inputs on
            the right rather than the left.

thomwolf's avatar
thomwolf committed
437
438
439
440
441
            Indices can be obtained using :class:`pytorch_transformers.XLMTokenizer`.
            See :func:`pytorch_transformers.PreTrainedTokenizer.encode` and
            :func:`pytorch_transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details.
        **position_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Indices of positions of each input sequence tokens in the position embeddings.
LysandreJik's avatar
LysandreJik committed
442
            Selected in the range ``[0, config.max_position_embeddings - 1]``.
thomwolf's avatar
thomwolf committed
443
444
445
446
447
448
        **token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            A parallel sequence of tokens (can be used to indicate various portions of the inputs).
            The embeddings from these tokens will be summed with the respective token embeddings.
            Indices are selected in the vocabulary (unlike BERT which has a specific vocabulary for segment indices).
        **langs**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            A parallel sequence of tokens to be used to indicate the language of each token in the input.
thomwolf's avatar
thomwolf committed
449
450
451
452
            Indices are languages ids which can be obtained from the language names by using two conversion mappings
            provided in the configuration of the model (only provided for multilingual models).
            More precisely, the `language name -> language id` mapping is in `model.config.lang2id` (dict str -> int) and
            the `language id -> language name` mapping is `model.config.id2lang` (dict int -> str).
thomwolf's avatar
thomwolf committed
453
        **attention_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length)``:
thomwolf's avatar
thomwolf committed
454
455
456
457
458
459
460
461
462
463
464
465
            Mask to avoid performing attention on padding token indices.
            Mask values selected in ``[0, 1]``:
            ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
        **lengths**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Length of each sentence that can be used to avoid performing attention on padding token indices.
            You can also use `attention_mask` for the same result (see above), kept here for compatbility.
            Indices selected in ``[0, ..., input_ids.size(-1)]``:
        **cache**:
            dictionary with ``torch.FloatTensor`` that contains pre-computed
            hidden-states (key and values in the attention blocks) as computed by the model
            (see `cache` output below). Can be used to speed up sequential decoding.
            The dictionary object will be modified in-place during the forward pass to add newly computed hidden-states.
thomwolf's avatar
thomwolf committed
466
        **head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``:
thomwolf's avatar
thomwolf committed
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
            Mask to nullify selected heads of the self-attention modules.
            Mask values selected in ``[0, 1]``:
            ``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
"""

@add_start_docstrings("The bare XLM Model transformer outputing raw hidden-states without any specific head on top.",
                      XLM_START_DOCSTRING, XLM_INPUTS_DOCSTRING)
class XLMModel(XLMPreTrainedModel):
    r"""
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)``
            Sequence of hidden-states at the last layer of the model.
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
483
484
485
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
486
487
488

    Examples::

wangfei's avatar
wangfei committed
489
490
491
492
493
        tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
        model = XLMModel.from_pretrained('xlm-mlm-en-2048')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids)
        last_hidden_states = outputs[0]  # The last hidden-state is the first element of the output tuple
thomwolf's avatar
thomwolf committed
494
495

    """
496
    ATTRIBUTES = ['encoder', 'eos_index', 'pad_index',  # 'with_output', 
Shijie Wu's avatar
Shijie Wu committed
497
                  'n_langs', 'use_lang_emb', 'n_words', 'dim', 'n_layers', 'n_heads', 
498
499
500
501
                  'hidden_dim', 'dropout', 'attention_dropout', 'asm',
                  'asm_cutoffs', 'asm_div_value']

    def __init__(self, config):  #, dico, is_encoder, with_output):
thomwolf's avatar
xlm  
thomwolf committed
502
503
504
        super(XLMModel, self).__init__(config)
        self.output_attentions = config.output_attentions
        self.output_hidden_states = config.output_hidden_states
505
506

        # encoder / decoder, output layer
thomwolf's avatar
thomwolf committed
507
508
509
510
        self.is_encoder = config.is_encoder
        self.is_decoder = not config.is_encoder
        if self.is_decoder:
            raise NotImplementedError("Currently XLM can only be used as an encoder")
511
        # self.with_output = with_output
thomwolf's avatar
xlm  
thomwolf committed
512
        self.causal = config.causal
513
514

        # dictionary / languages
thomwolf's avatar
xlm  
thomwolf committed
515
        self.n_langs = config.n_langs
Shijie Wu's avatar
Shijie Wu committed
516
        self.use_lang_emb = config.use_lang_emb
thomwolf's avatar
xlm  
thomwolf committed
517
518
519
        self.n_words = config.n_words
        self.eos_index = config.eos_index
        self.pad_index = config.pad_index
520
        # self.dico = dico
thomwolf's avatar
thomwolf committed
521
522
        # self.id2lang = config.id2lang
        # self.lang2id = config.lang2id
523
        # assert len(self.dico) == self.n_words
thomwolf's avatar
thomwolf committed
524
        # assert len(self.id2lang) == len(self.lang2id) == self.n_langs
525
526

        # model parameters
thomwolf's avatar
xlm  
thomwolf committed
527
        self.dim = config.emb_dim       # 512 by default
528
        self.hidden_dim = self.dim * 4  # 2048 by default
thomwolf's avatar
xlm  
thomwolf committed
529
530
531
532
        self.n_heads = config.n_heads   # 8 by default
        self.n_layers = config.n_layers
        self.dropout = config.dropout
        self.attention_dropout = config.attention_dropout
533
534
535
        assert self.dim % self.n_heads == 0, 'transformer dim must be a multiple of n_heads'

        # embeddings
thomwolf's avatar
thomwolf committed
536
        self.position_embeddings = nn.Embedding(config.max_position_embeddings, self.dim)
thomwolf's avatar
xlm  
thomwolf committed
537
538
        if config.sinusoidal_embeddings:
            create_sinusoidal_embeddings(config.max_position_embeddings, self.dim, out=self.position_embeddings.weight)
Shijie Wu's avatar
Shijie Wu committed
539
        if config.n_langs > 1 and config.use_lang_emb:
thomwolf's avatar
thomwolf committed
540
541
542
            self.lang_embeddings = nn.Embedding(self.n_langs, self.dim)
        self.embeddings = nn.Embedding(self.n_words, self.dim, padding_idx=self.pad_index)
        self.layer_norm_emb = nn.LayerNorm(self.dim, eps=config.layer_norm_eps)
543
544
545
546
547
548

        # transformer layers
        self.attentions = nn.ModuleList()
        self.layer_norm1 = nn.ModuleList()
        self.ffns = nn.ModuleList()
        self.layer_norm2 = nn.ModuleList()
thomwolf's avatar
thomwolf committed
549
550
551
        # if self.is_decoder:
        #     self.layer_norm15 = nn.ModuleList()
        #     self.encoder_attn = nn.ModuleList()
552
553

        for _ in range(self.n_layers):
thomwolf's avatar
thomwolf committed
554
            self.attentions.append(MultiHeadAttention(self.n_heads, self.dim, config=config))
thomwolf's avatar
thomwolf committed
555
            self.layer_norm1.append(nn.LayerNorm(self.dim, eps=config.layer_norm_eps))
thomwolf's avatar
thomwolf committed
556
            # if self.is_decoder:
thomwolf's avatar
thomwolf committed
557
            #     self.layer_norm15.append(nn.LayerNorm(self.dim, eps=config.layer_norm_eps))
thomwolf's avatar
thomwolf committed
558
559
            #     self.encoder_attn.append(MultiHeadAttention(self.n_heads, self.dim, dropout=self.attention_dropout))
            self.ffns.append(TransformerFFN(self.dim, self.hidden_dim, self.dim, config=config))
thomwolf's avatar
thomwolf committed
560
561
            self.layer_norm2.append(nn.LayerNorm(self.dim, eps=config.layer_norm_eps))

LysandreJik's avatar
LysandreJik committed
562
563
        if hasattr(config, "pruned_heads"):
            pruned_heads = config.pruned_heads.copy().items()
564
            config.pruned_heads = {}
LysandreJik's avatar
LysandreJik committed
565
566
567
568
            for layer, heads in pruned_heads:
                if self.attentions[int(layer)].n_heads == config.n_heads:
                    self.prune_heads({int(layer): list(map(int, heads))})

thomwolf's avatar
thomwolf committed
569
        self.apply(self.init_weights)
570

thomwolf's avatar
thomwolf committed
571
572
    def _resize_token_embeddings(self, new_num_tokens):
        self.embeddings = self._get_resized_embeddings(self.embeddings, new_num_tokens)
thomwolf's avatar
thomwolf committed
573
        return self.embeddings
thomwolf's avatar
thomwolf committed
574

thomwolf's avatar
thomwolf committed
575
576
577
578
579
580
581
582
    def _prune_heads(self, heads_to_prune):
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
            See base class PreTrainedModel
        """
        for layer, heads in heads_to_prune.items():
            self.attentions[layer].prune_heads(heads)

thomwolf's avatar
thomwolf committed
583
    def forward(self, input_ids, lengths=None, position_ids=None, langs=None,
thomwolf's avatar
thomwolf committed
584
585
                token_type_ids=None, attention_mask=None, cache=None, head_mask=None):  # src_enc=None, src_len=None, 
        if lengths is None:
thomwolf's avatar
thomwolf committed
586
            lengths = (input_ids != self.pad_index).sum(dim=1).long()
thomwolf's avatar
xlm  
thomwolf committed
587
        # mask = input_ids != self.pad_index
588
589

        # check inputs
thomwolf's avatar
xlm  
thomwolf committed
590
        bs, slen = input_ids.size()
591
592
        assert lengths.size(0) == bs
        assert lengths.max().item() <= slen
thomwolf's avatar
xlm  
thomwolf committed
593
        # input_ids = input_ids.transpose(0, 1)  # batch size as dimension 0
thomwolf's avatar
thomwolf committed
594
595
596
597
        # assert (src_enc is None) == (src_len is None)
        # if src_enc is not None:
        #     assert self.is_decoder
        #     assert src_enc.size(0) == bs
598
599

        # generate masks
thomwolf's avatar
thomwolf committed
600
        mask, attn_mask = get_masks(slen, lengths, self.causal, padding_mask=attention_mask)
thomwolf's avatar
thomwolf committed
601
602
        # if self.is_decoder and src_enc is not None:
        #     src_mask = torch.arange(src_len.max(), dtype=torch.long, device=lengths.device) < src_len[:, None]
603

thomwolf's avatar
thomwolf committed
604
605
606
607
        # position_ids
        if position_ids is None:
            position_ids = input_ids.new((slen,)).long()
            position_ids = torch.arange(slen, out=position_ids).unsqueeze(0)
608
        else:
thomwolf's avatar
thomwolf committed
609
610
            assert position_ids.size() == (bs, slen)  # (slen, bs)
            # position_ids = position_ids.transpose(0, 1)
611
612
613

        # langs
        if langs is not None:
thomwolf's avatar
thomwolf committed
614
615
            assert langs.size() == (bs, slen)  # (slen, bs)
            # langs = langs.transpose(0, 1)
616

thomwolf's avatar
thomwolf committed
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x qlen x klen]
        if head_mask is not None:
            if head_mask.dim() == 1:
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
                head_mask = head_mask.expand(self.n_layers, -1, -1, -1, -1)
            elif head_mask.dim() == 2:
                head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
            head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
        else:
            head_mask = [None] * self.n_layers

632
633
634
        # do not recompute cached elements
        if cache is not None:
            _slen = slen - cache['slen']
thomwolf's avatar
xlm  
thomwolf committed
635
            input_ids = input_ids[:, -_slen:]
thomwolf's avatar
thomwolf committed
636
            position_ids = position_ids[:, -_slen:]
637
638
639
640
641
642
            if langs is not None:
                langs = langs[:, -_slen:]
            mask = mask[:, -_slen:]
            attn_mask = attn_mask[:, -_slen:]

        # embeddings
thomwolf's avatar
xlm  
thomwolf committed
643
        tensor = self.embeddings(input_ids)
thomwolf's avatar
thomwolf committed
644
        tensor = tensor + self.position_embeddings(position_ids).expand_as(tensor)
Shijie Wu's avatar
Shijie Wu committed
645
        if langs is not None and self.use_lang_emb:
646
            tensor = tensor + self.lang_embeddings(langs)
thomwolf's avatar
thomwolf committed
647
648
        if token_type_ids is not None:
            tensor = tensor + self.embeddings(token_type_ids)
649
650
651
652
653
        tensor = self.layer_norm_emb(tensor)
        tensor = F.dropout(tensor, p=self.dropout, training=self.training)
        tensor *= mask.unsqueeze(-1).to(tensor.dtype)

        # transformer layers
thomwolf's avatar
thomwolf committed
654
655
        hidden_states = ()
        attentions = ()
656
        for i in range(self.n_layers):
thomwolf's avatar
thomwolf committed
657
            if self.output_hidden_states:
thomwolf's avatar
thomwolf committed
658
                hidden_states = hidden_states + (tensor,)
659
660

            # self attention
thomwolf's avatar
thomwolf committed
661
662
663
            attn_outputs = self.attentions[i](tensor, attn_mask, cache=cache, head_mask=head_mask[i])
            attn = attn_outputs[0]
            if self.output_attentions:
thomwolf's avatar
thomwolf committed
664
                attentions = attentions + (attn_outputs[1],)
665
666
667
668
669
            attn = F.dropout(attn, p=self.dropout, training=self.training)
            tensor = tensor + attn
            tensor = self.layer_norm1[i](tensor)

            # encoder attention (for decoder only)
thomwolf's avatar
thomwolf committed
670
671
672
673
674
            # if self.is_decoder and src_enc is not None:
            #     attn = self.encoder_attn[i](tensor, src_mask, kv=src_enc, cache=cache)
            #     attn = F.dropout(attn, p=self.dropout, training=self.training)
            #     tensor = tensor + attn
            #     tensor = self.layer_norm15[i](tensor)
675
676
677
678
679
680

            # FFN
            tensor = tensor + self.ffns[i](tensor)
            tensor = self.layer_norm2[i](tensor)
            tensor *= mask.unsqueeze(-1).to(tensor.dtype)

thomwolf's avatar
thomwolf committed
681
682
        # Add last hidden state
        if self.output_hidden_states:
thomwolf's avatar
thomwolf committed
683
            hidden_states = hidden_states + (tensor,)
thomwolf's avatar
thomwolf committed
684

685
686
687
688
689
        # update cache length
        if cache is not None:
            cache['slen'] += tensor.size(1)

        # move back sequence length to dimension 0
thomwolf's avatar
thomwolf committed
690
        # tensor = tensor.transpose(0, 1)
691

thomwolf's avatar
thomwolf committed
692
        outputs = (tensor,)
693
        if self.output_hidden_states:
thomwolf's avatar
thomwolf committed
694
            outputs = outputs + (hidden_states,)
thomwolf's avatar
thomwolf committed
695
        if self.output_attentions:
thomwolf's avatar
thomwolf committed
696
            outputs = outputs + (attentions,)
thomwolf's avatar
thomwolf committed
697
        return outputs  # outputs, (hidden_states), (attentions)
698
699
700
701
702
703


class XLMPredLayer(nn.Module):
    """
    Prediction layer (cross_entropy or adaptive_softmax).
    """
thomwolf's avatar
xlm  
thomwolf committed
704
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
705
        super(XLMPredLayer, self).__init__()
thomwolf's avatar
xlm  
thomwolf committed
706
707
708
709
        self.asm = config.asm
        self.n_words = config.n_words
        self.pad_index = config.pad_index
        dim = config.emb_dim
710

thomwolf's avatar
xlm  
thomwolf committed
711
        if config.asm is False:
thomwolf's avatar
thomwolf committed
712
            self.proj = nn.Linear(dim, config.n_words, bias=True)
713
714
715
        else:
            self.proj = nn.AdaptiveLogSoftmaxWithLoss(
                in_features=dim,
thomwolf's avatar
xlm  
thomwolf committed
716
717
718
                n_classes=config.n_words,
                cutoffs=config.asm_cutoffs,
                div_value=config.asm_div_value,
719
720
721
                head_bias=True,  # default is False
            )

thomwolf's avatar
thomwolf committed
722
723
    def forward(self, x, y=None):
        """ Compute the loss, and optionally the scores.
724
        """
thomwolf's avatar
thomwolf committed
725
        outputs = ()
726
727
        if self.asm is False:
            scores = self.proj(x).view(-1, self.n_words)
thomwolf's avatar
thomwolf committed
728
729
730
731
            outputs = (scores,) + outputs
            if y is not None:
                loss = F.cross_entropy(scores, y, reduction='elementwise_mean')
                outputs = (loss,) + outputs
732
        else:
thomwolf's avatar
thomwolf committed
733
734
735
736
737
            scores = self.proj.log_prob(x)
            outputs = (scores,) + outputs
            if y is not None:
                _, loss = self.proj(x, y)
                outputs = (loss,) + outputs
738

thomwolf's avatar
thomwolf committed
739
        return outputs
740

thomwolf's avatar
thomwolf committed
741

thomwolf's avatar
thomwolf committed
742
743
744
@add_start_docstrings("""The XLM Model transformer with a language modeling head on top
    (linear layer with weights tied to the input embeddings). """,
    XLM_START_DOCSTRING, XLM_INPUTS_DOCSTRING)
thomwolf's avatar
thomwolf committed
745
class XLMWithLMHeadModel(XLMPreTrainedModel):
thomwolf's avatar
thomwolf committed
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
    r"""
        **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Labels for language modeling.
            Note that the labels **are shifted** inside the model, i.e. you can set ``lm_labels = input_ids``
            Indices are selected in ``[-1, 0, ..., config.vocab_size]``
            All labels set to ``-1`` are ignored (masked), the loss is only
            computed for labels in ``[0, ..., config.vocab_size]``

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Language modeling loss.
        **prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)``
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
763
764
765
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
766
767
768

    Examples::

wangfei's avatar
wangfei committed
769
770
771
772
773
        tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
        model = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids)
        last_hidden_states = outputs[0]  # The last hidden-state is the first element of the output tuple
774

thomwolf's avatar
xlm  
thomwolf committed
775
776
    """
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
777
        super(XLMWithLMHeadModel, self).__init__(config)
thomwolf's avatar
xlm  
thomwolf committed
778
        self.transformer = XLMModel(config)
thomwolf's avatar
thomwolf committed
779
        self.pred_layer = XLMPredLayer(config)
780
781
782
783
784
785
786

        self.apply(self.init_weights)
        self.tie_weights()

    def tie_weights(self):
        """ Make sure we are sharing the embeddings
        """
thomwolf's avatar
thomwolf committed
787
        self._tie_or_clone_weights(self.pred_layer.proj, self.transformer.embeddings)
788

thomwolf's avatar
thomwolf committed
789
    def forward(self, input_ids, lengths=None, position_ids=None, langs=None, token_type_ids=None,
thomwolf's avatar
thomwolf committed
790
                attention_mask=None, cache=None, labels=None, head_mask=None):
thomwolf's avatar
thomwolf committed
791
792
793
        transformer_outputs = self.transformer(input_ids, lengths=lengths, position_ids=position_ids,
                                               token_type_ids=token_type_ids, langs=langs,
                                               attention_mask=attention_mask, cache=cache, head_mask=head_mask)
794

795
        output = transformer_outputs[0]
thomwolf's avatar
thomwolf committed
796
797
        outputs = self.pred_layer(output, labels)
        outputs = outputs + transformer_outputs[1:]  # Keep new_mems and attention/hidden states if they are here
798

799
        return outputs
800
801


thomwolf's avatar
thomwolf committed
802
803
804
@add_start_docstrings("""XLM Model with a sequence classification/regression head on top (a linear layer on top of
    the pooled output) e.g. for GLUE tasks. """,
    XLM_START_DOCSTRING, XLM_INPUTS_DOCSTRING)
805
class XLMForSequenceClassification(XLMPreTrainedModel):
thomwolf's avatar
thomwolf committed
806
807
808
    r"""
        **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Labels for computing the sequence classification/regression loss.
LysandreJik's avatar
LysandreJik committed
809
            Indices should be in ``[0, ..., config.num_labels - 1]``.
thomwolf's avatar
thomwolf committed
810
811
812
813
814
815
816
817
818
819
820
821
            If ``config.num_labels == 1`` a regression loss is computed (Mean-Square loss),
            If ``config.num_labels > 1`` a classification loss is computed (Cross-Entropy).

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Classification (or regression if config.num_labels==1) loss.
        **logits**: ``torch.FloatTensor`` of shape ``(batch_size, config.num_labels)``
            Classification (or regression if config.num_labels==1) scores (before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
822
823
824
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
825
826
827

    Examples::

wangfei's avatar
wangfei committed
828
829
830
831
832
833
        tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
        model = XLMForSequenceClassification.from_pretrained('xlm-mlm-en-2048')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        labels = torch.tensor([1]).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids, labels=labels)
        loss, logits = outputs[:2]
834

835
    """
thomwolf's avatar
xlm  
thomwolf committed
836
    def __init__(self, config):
837
        super(XLMForSequenceClassification, self).__init__(config)
thomwolf's avatar
thomwolf committed
838
        self.num_labels = config.num_labels
839

thomwolf's avatar
xlm  
thomwolf committed
840
        self.transformer = XLMModel(config)
thomwolf's avatar
thomwolf committed
841
        self.sequence_summary = SequenceSummary(config)
thomwolf's avatar
thomwolf committed
842

843
844
        self.apply(self.init_weights)

thomwolf's avatar
thomwolf committed
845
    def forward(self, input_ids, lengths=None, position_ids=None, langs=None, token_type_ids=None,
thomwolf's avatar
thomwolf committed
846
                attention_mask=None, cache=None, labels=None, head_mask=None):
thomwolf's avatar
thomwolf committed
847
848
849
        transformer_outputs = self.transformer(input_ids, lengths=lengths, position_ids=position_ids,
                                               token_type_ids=token_type_ids, langs=langs,
                                               attention_mask=attention_mask, cache=cache, head_mask=head_mask)
850

851
        output = transformer_outputs[0]
thomwolf's avatar
thomwolf committed
852
        logits = self.sequence_summary(output)
853

thomwolf's avatar
thomwolf committed
854
        outputs = (logits,) + transformer_outputs[1:]  # Keep new_mems and attention/hidden states if they are here
855

856
857
858
859
860
861
862
863
        if labels is not None:
            if self.num_labels == 1:
                #  We are doing regression
                loss_fct = MSELoss()
                loss = loss_fct(logits.view(-1), labels.view(-1))
            else:
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
thomwolf's avatar
thomwolf committed
864
            outputs = (loss,) + outputs
865

866
        return outputs
867
868


thomwolf's avatar
thomwolf committed
869
870
871
@add_start_docstrings("""XLM Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of
    the hidden-states output to compute `span start logits` and `span end logits`). """,
    XLM_START_DOCSTRING, XLM_INPUTS_DOCSTRING)
872
class XLMForQuestionAnswering(XLMPreTrainedModel):
thomwolf's avatar
thomwolf committed
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
    r"""
        **start_positions**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Labels for position (index) of the start of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`).
            Position outside of the sequence are not taken into account for computing the loss.
        **end_positions**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Labels for position (index) of the end of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`).
            Position outside of the sequence are not taken into account for computing the loss.
        **is_impossible**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Labels whether a question has an answer or no answer (SQuAD 2.0)
        **cls_index**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Labels for position (index) of the classification token to use as input for computing plausibility of the answer.
        **p_mask**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Optional mask of tokens which can't be in answers (e.g. [CLS], [PAD], ...) 

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.
        **start_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length,)``
            Span-start scores (before SoftMax).
        **end_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length,)``
            Span-end scores (before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
900
901
902
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
903
904
905

    Examples::

wangfei's avatar
wangfei committed
906
907
908
909
910
911
912
        tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
        model = XLMForQuestionAnswering.from_pretrained('xlm-mlm-en-2048')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        start_positions = torch.tensor([1])
        end_positions = torch.tensor([3])
        outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
        loss, start_scores, end_scores = outputs[:2]
913
914

    """
thomwolf's avatar
thomwolf committed
915
    def __init__(self, config):
916
        super(XLMForQuestionAnswering, self).__init__(config)
917

thomwolf's avatar
xlm  
thomwolf committed
918
        self.transformer = XLMModel(config)
thomwolf's avatar
thomwolf committed
919
        self.qa_outputs = SQuADHead(config)
thomwolf's avatar
xlm  
thomwolf committed
920

921
922
        self.apply(self.init_weights)

thomwolf's avatar
thomwolf committed
923
    def forward(self, input_ids, lengths=None, position_ids=None, langs=None, token_type_ids=None,
thomwolf's avatar
thomwolf committed
924
925
                attention_mask=None, cache=None, start_positions=None, end_positions=None,
                cls_index=None, is_impossible=None, p_mask=None, head_mask=None):
thomwolf's avatar
thomwolf committed
926
927
928
        transformer_outputs = self.transformer(input_ids, lengths=lengths, position_ids=position_ids,
                                               token_type_ids=token_type_ids, langs=langs,
                                               attention_mask=attention_mask, cache=cache, head_mask=head_mask)
929

930
        output = transformer_outputs[0]
thomwolf's avatar
thomwolf committed
931
932
933
934
935

        outputs = self.qa_outputs(output, start_positions=start_positions, end_positions=end_positions,
                                  cls_index=cls_index, is_impossible=is_impossible, p_mask=p_mask)

        outputs = outputs + transformer_outputs[1:]  # Keep new_mems and attention/hidden states if they are here
936
937

        return outputs