test_modeling_tf_mobilebert.py 16 KB
Newer Older
Vasily Shamporov's avatar
Vasily Shamporov committed
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
Vasily Shamporov's avatar
Vasily Shamporov committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

from transformers import MobileBertConfig, is_tf_available
20
from transformers.models.auto import get_values
21
from transformers.testing_utils import require_tf, slow, tooslow
Vasily Shamporov's avatar
Vasily Shamporov committed
22

Yih-Dar's avatar
Yih-Dar committed
23
24
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
25
from ...test_pipeline_mixin import PipelineTesterMixin
Vasily Shamporov's avatar
Vasily Shamporov committed
26
27
28
29


if is_tf_available():
    import tensorflow as tf
30

Sylvain Gugger's avatar
Sylvain Gugger committed
31
    from transformers import (
32
        TF_MODEL_FOR_PRETRAINING_MAPPING,
Vasily Shamporov's avatar
Vasily Shamporov committed
33
        TFMobileBertForMaskedLM,
34
        TFMobileBertForMultipleChoice,
Vasily Shamporov's avatar
Vasily Shamporov committed
35
36
        TFMobileBertForNextSentencePrediction,
        TFMobileBertForPreTraining,
37
        TFMobileBertForQuestionAnswering,
Vasily Shamporov's avatar
Vasily Shamporov committed
38
39
        TFMobileBertForSequenceClassification,
        TFMobileBertForTokenClassification,
40
        TFMobileBertModel,
Vasily Shamporov's avatar
Vasily Shamporov committed
41
42
43
44
    )


@require_tf
45
class TFMobileBertModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
Vasily Shamporov's avatar
Vasily Shamporov committed
46
47
48
49
50
51
52
53
54
55
56
57
58
59
    all_model_classes = (
        (
            TFMobileBertModel,
            TFMobileBertForMaskedLM,
            TFMobileBertForNextSentencePrediction,
            TFMobileBertForPreTraining,
            TFMobileBertForQuestionAnswering,
            TFMobileBertForSequenceClassification,
            TFMobileBertForTokenClassification,
            TFMobileBertForMultipleChoice,
        )
        if is_tf_available()
        else ()
    )
60
61
62
63
64
65
66
67
68
69
70
71
    pipeline_model_mapping = (
        {
            "feature-extraction": TFMobileBertModel,
            "fill-mask": TFMobileBertForMaskedLM,
            "question-answering": TFMobileBertForQuestionAnswering,
            "text-classification": TFMobileBertForSequenceClassification,
            "token-classification": TFMobileBertForTokenClassification,
            "zero-shot": TFMobileBertForSequenceClassification,
        }
        if is_tf_available()
        else {}
    )
72
    test_head_masking = False
73
    test_onnx = False
Vasily Shamporov's avatar
Vasily Shamporov committed
74

75
76
77
78
79
80
81
82
83
84
    # special case for ForPreTraining model, same as BERT tests
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)

        if return_labels:
            if model_class in get_values(TF_MODEL_FOR_PRETRAINING_MAPPING):
                inputs_dict["next_sentence_label"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)

        return inputs_dict

Vasily Shamporov's avatar
Vasily Shamporov committed
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
    class TFMobileBertModelTester(object):
        def __init__(
            self,
            parent,
            batch_size=13,
            seq_length=7,
            is_training=True,
            use_input_mask=True,
            use_token_type_ids=True,
            use_labels=True,
            vocab_size=99,
            hidden_size=32,
            embedding_size=32,
            num_hidden_layers=5,
            num_attention_heads=4,
            intermediate_size=37,
            hidden_act="gelu",
            hidden_dropout_prob=0.1,
            attention_probs_dropout_prob=0.1,
            max_position_embeddings=512,
            type_vocab_size=16,
            type_sequence_label_size=2,
            initializer_range=0.02,
            num_labels=3,
            num_choices=4,
            scope=None,
        ):
            self.parent = parent
            self.batch_size = batch_size
            self.seq_length = seq_length
            self.is_training = is_training
            self.use_input_mask = use_input_mask
            self.use_token_type_ids = use_token_type_ids
            self.use_labels = use_labels
            self.vocab_size = vocab_size
            self.hidden_size = hidden_size
            self.num_hidden_layers = num_hidden_layers
            self.num_attention_heads = num_attention_heads
            self.intermediate_size = intermediate_size
            self.hidden_act = hidden_act
            self.hidden_dropout_prob = hidden_dropout_prob
            self.attention_probs_dropout_prob = attention_probs_dropout_prob
            self.max_position_embeddings = max_position_embeddings
            self.type_vocab_size = type_vocab_size
            self.type_sequence_label_size = type_sequence_label_size
            self.initializer_range = initializer_range
            self.num_labels = num_labels
            self.num_choices = num_choices
            self.scope = scope
            self.embedding_size = embedding_size

        def prepare_config_and_inputs(self):
            input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

            input_mask = None
            if self.use_input_mask:
141
                input_mask = random_attention_mask([self.batch_size, self.seq_length])
Vasily Shamporov's avatar
Vasily Shamporov committed
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

            token_type_ids = None
            if self.use_token_type_ids:
                token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

            sequence_labels = None
            token_labels = None
            choice_labels = None
            if self.use_labels:
                sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
                token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
                choice_labels = ids_tensor([self.batch_size], self.num_choices)

            config = MobileBertConfig(
                vocab_size=self.vocab_size,
                hidden_size=self.hidden_size,
                num_hidden_layers=self.num_hidden_layers,
                num_attention_heads=self.num_attention_heads,
                intermediate_size=self.intermediate_size,
                hidden_act=self.hidden_act,
                hidden_dropout_prob=self.hidden_dropout_prob,
                attention_probs_dropout_prob=self.attention_probs_dropout_prob,
                max_position_embeddings=self.max_position_embeddings,
                type_vocab_size=self.type_vocab_size,
                initializer_range=self.initializer_range,
                embedding_size=self.embedding_size,
            )

            return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

        def create_and_check_mobilebert_model(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
            model = TFMobileBertModel(config=config)
            inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
177
            result = model(inputs)
Vasily Shamporov's avatar
Vasily Shamporov committed
178
179

            inputs = [input_ids, input_mask]
Sylvain Gugger's avatar
Sylvain Gugger committed
180
            result = model(inputs)
Vasily Shamporov's avatar
Vasily Shamporov committed
181

Sylvain Gugger's avatar
Sylvain Gugger committed
182
            result = model(input_ids)
Vasily Shamporov's avatar
Vasily Shamporov committed
183

184
185
            self.parent.assertEqual(
                result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)
Vasily Shamporov's avatar
Vasily Shamporov committed
186
            )
187
            self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
Vasily Shamporov's avatar
Vasily Shamporov committed
188
189
190
191
192
193

        def create_and_check_mobilebert_for_masked_lm(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
            model = TFMobileBertForMaskedLM(config=config)
            inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
194
            result = model(inputs)
195
            self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
Vasily Shamporov's avatar
Vasily Shamporov committed
196
197
198
199
200
201

        def create_and_check_mobilebert_for_next_sequence_prediction(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
            model = TFMobileBertForNextSentencePrediction(config=config)
            inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
202
            result = model(inputs)
203
            self.parent.assertEqual(result.logits.shape, (self.batch_size, 2))
Vasily Shamporov's avatar
Vasily Shamporov committed
204
205
206
207
208
209

        def create_and_check_mobilebert_for_pretraining(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
            model = TFMobileBertForPreTraining(config=config)
            inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
210
            result = model(inputs)
211
212
            self.parent.assertEqual(
                result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size)
Vasily Shamporov's avatar
Vasily Shamporov committed
213
            )
214
            self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2))
Vasily Shamporov's avatar
Vasily Shamporov committed
215
216
217
218
219
220
221

        def create_and_check_mobilebert_for_sequence_classification(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
            config.num_labels = self.num_labels
            model = TFMobileBertForSequenceClassification(config=config)
            inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
222
            result = model(inputs)
223
            self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
Vasily Shamporov's avatar
Vasily Shamporov committed
224
225
226
227
228
229
230
231
232
233
234
235
236
237

        def create_and_check_mobilebert_for_multiple_choice(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
            config.num_choices = self.num_choices
            model = TFMobileBertForMultipleChoice(config=config)
            multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1))
            multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
            multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1))
            inputs = {
                "input_ids": multiple_choice_inputs_ids,
                "attention_mask": multiple_choice_input_mask,
                "token_type_ids": multiple_choice_token_type_ids,
            }
Sylvain Gugger's avatar
Sylvain Gugger committed
238
            result = model(inputs)
239
            self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
Vasily Shamporov's avatar
Vasily Shamporov committed
240
241
242
243
244
245
246

        def create_and_check_mobilebert_for_token_classification(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
            config.num_labels = self.num_labels
            model = TFMobileBertForTokenClassification(config=config)
            inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
247
            result = model(inputs)
248
            self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
Vasily Shamporov's avatar
Vasily Shamporov committed
249
250
251
252
253
254

        def create_and_check_mobilebert_for_question_answering(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
            model = TFMobileBertForQuestionAnswering(config=config)
            inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
255
            result = model(inputs)
256
257
            self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
            self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
Vasily Shamporov's avatar
Vasily Shamporov committed
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311

        def prepare_config_and_inputs_for_common(self):
            config_and_inputs = self.prepare_config_and_inputs()
            (
                config,
                input_ids,
                token_type_ids,
                input_mask,
                sequence_labels,
                token_labels,
                choice_labels,
            ) = config_and_inputs
            inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
            return config, inputs_dict

    def setUp(self):
        self.model_tester = TFMobileBertModelTest.TFMobileBertModelTester(self)
        self.config_tester = ConfigTester(self, config_class=MobileBertConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_mobilebert_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_mobilebert_model(*config_and_inputs)

    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_mobilebert_for_masked_lm(*config_and_inputs)

    def test_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_mobilebert_for_multiple_choice(*config_and_inputs)

    def test_for_next_sequence_prediction(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*config_and_inputs)

    def test_for_pretraining(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_mobilebert_for_pretraining(*config_and_inputs)

    def test_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_mobilebert_for_question_answering(*config_and_inputs)

    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_mobilebert_for_sequence_classification(*config_and_inputs)

    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_mobilebert_for_token_classification(*config_and_inputs)

312
313
314
315
316
317
318
319
320
    def test_model_common_attributes(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        list_lm_models = [TFMobileBertForMaskedLM, TFMobileBertForPreTraining]

        for model_class in self.all_model_classes:
            model = model_class(config)
            assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer)

            if model_class in list_lm_models:
321
                x = model.get_output_embeddings()
322
                assert isinstance(x, tf.keras.layers.Layer)
323
324
325
326
                name = model.get_bias()
                assert isinstance(name, dict)
                for k, v in name.items():
                    assert isinstance(v, tf.Variable)
327
            else:
328
                x = model.get_output_embeddings()
329
                assert x is None
330
331
                name = model.get_bias()
                assert name is None
332

Joao Gante's avatar
Joao Gante committed
333
334
335
336
337
    @slow
    def test_keras_fit(self):
        # Override as it is a slow test on this model
        super().test_keras_fit()

338
    @tooslow
Julien Plu's avatar
Julien Plu committed
339
340
341
    def test_saved_model_creation(self):
        pass

Vasily Shamporov's avatar
Vasily Shamporov committed
342
343
344
    @slow
    def test_model_from_pretrained(self):
        # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
Lysandre Debut's avatar
Lysandre Debut committed
345
        for model_name in ["google/mobilebert-uncased"]:
Vasily Shamporov's avatar
Vasily Shamporov committed
346
347
            model = TFMobileBertModel.from_pretrained(model_name)
            self.assertIsNotNone(model)
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370


@require_tf
class TFMobileBertModelIntegrationTest(unittest.TestCase):
    @slow
    def test_inference_masked_lm(self):
        model = TFMobileBertForPreTraining.from_pretrained("google/mobilebert-uncased")
        input_ids = tf.constant([[0, 1, 2, 3, 4, 5]])
        output = model(input_ids)[0]

        expected_shape = [1, 6, 30522]
        self.assertEqual(output.shape, expected_shape)

        expected_slice = tf.constant(
            [
                [
                    [-4.5919547, -9.248295, -9.645256],
                    [-6.7306175, -6.440284, -6.6052837],
                    [-7.2743506, -6.7847915, -6.024673],
                ]
            ]
        )
        tf.debugging.assert_near(output[:, :3, :3], expected_slice, atol=1e-4)