"host/online_compilation/CMakeLists.txt" did not exist on "e80fbbdd71ed77f27bda32724bcb1e2c17bfb805"
test_modeling_tf_mobilebert.py 15.3 KB
Newer Older
Vasily Shamporov's avatar
Vasily Shamporov committed
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
Vasily Shamporov's avatar
Vasily Shamporov committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

from transformers import MobileBertConfig, is_tf_available
20
from transformers.models.auto import get_values
21
from transformers.testing_utils import require_tf, slow, tooslow
Vasily Shamporov's avatar
Vasily Shamporov committed
22

Yih-Dar's avatar
Yih-Dar committed
23
24
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
Vasily Shamporov's avatar
Vasily Shamporov committed
25
26
27
28


if is_tf_available():
    import tensorflow as tf
29

Sylvain Gugger's avatar
Sylvain Gugger committed
30
    from transformers import (
31
        TF_MODEL_FOR_PRETRAINING_MAPPING,
Vasily Shamporov's avatar
Vasily Shamporov committed
32
        TFMobileBertForMaskedLM,
33
        TFMobileBertForMultipleChoice,
Vasily Shamporov's avatar
Vasily Shamporov committed
34
35
        TFMobileBertForNextSentencePrediction,
        TFMobileBertForPreTraining,
36
        TFMobileBertForQuestionAnswering,
Vasily Shamporov's avatar
Vasily Shamporov committed
37
38
        TFMobileBertForSequenceClassification,
        TFMobileBertForTokenClassification,
39
        TFMobileBertModel,
Vasily Shamporov's avatar
Vasily Shamporov committed
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
    )


@require_tf
class TFMobileBertModelTest(TFModelTesterMixin, unittest.TestCase):
    all_model_classes = (
        (
            TFMobileBertModel,
            TFMobileBertForMaskedLM,
            TFMobileBertForNextSentencePrediction,
            TFMobileBertForPreTraining,
            TFMobileBertForQuestionAnswering,
            TFMobileBertForSequenceClassification,
            TFMobileBertForTokenClassification,
            TFMobileBertForMultipleChoice,
        )
        if is_tf_available()
        else ()
    )
59
    test_head_masking = False
60
    test_onnx = False
Vasily Shamporov's avatar
Vasily Shamporov committed
61

62
63
64
65
66
67
68
69
70
71
    # special case for ForPreTraining model, same as BERT tests
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)

        if return_labels:
            if model_class in get_values(TF_MODEL_FOR_PRETRAINING_MAPPING):
                inputs_dict["next_sentence_label"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)

        return inputs_dict

Vasily Shamporov's avatar
Vasily Shamporov committed
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
    class TFMobileBertModelTester(object):
        def __init__(
            self,
            parent,
            batch_size=13,
            seq_length=7,
            is_training=True,
            use_input_mask=True,
            use_token_type_ids=True,
            use_labels=True,
            vocab_size=99,
            hidden_size=32,
            embedding_size=32,
            num_hidden_layers=5,
            num_attention_heads=4,
            intermediate_size=37,
            hidden_act="gelu",
            hidden_dropout_prob=0.1,
            attention_probs_dropout_prob=0.1,
            max_position_embeddings=512,
            type_vocab_size=16,
            type_sequence_label_size=2,
            initializer_range=0.02,
            num_labels=3,
            num_choices=4,
            scope=None,
        ):
            self.parent = parent
            self.batch_size = batch_size
            self.seq_length = seq_length
            self.is_training = is_training
            self.use_input_mask = use_input_mask
            self.use_token_type_ids = use_token_type_ids
            self.use_labels = use_labels
            self.vocab_size = vocab_size
            self.hidden_size = hidden_size
            self.num_hidden_layers = num_hidden_layers
            self.num_attention_heads = num_attention_heads
            self.intermediate_size = intermediate_size
            self.hidden_act = hidden_act
            self.hidden_dropout_prob = hidden_dropout_prob
            self.attention_probs_dropout_prob = attention_probs_dropout_prob
            self.max_position_embeddings = max_position_embeddings
            self.type_vocab_size = type_vocab_size
            self.type_sequence_label_size = type_sequence_label_size
            self.initializer_range = initializer_range
            self.num_labels = num_labels
            self.num_choices = num_choices
            self.scope = scope
            self.embedding_size = embedding_size

        def prepare_config_and_inputs(self):
            input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

            input_mask = None
            if self.use_input_mask:
128
                input_mask = random_attention_mask([self.batch_size, self.seq_length])
Vasily Shamporov's avatar
Vasily Shamporov committed
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

            token_type_ids = None
            if self.use_token_type_ids:
                token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

            sequence_labels = None
            token_labels = None
            choice_labels = None
            if self.use_labels:
                sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
                token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
                choice_labels = ids_tensor([self.batch_size], self.num_choices)

            config = MobileBertConfig(
                vocab_size=self.vocab_size,
                hidden_size=self.hidden_size,
                num_hidden_layers=self.num_hidden_layers,
                num_attention_heads=self.num_attention_heads,
                intermediate_size=self.intermediate_size,
                hidden_act=self.hidden_act,
                hidden_dropout_prob=self.hidden_dropout_prob,
                attention_probs_dropout_prob=self.attention_probs_dropout_prob,
                max_position_embeddings=self.max_position_embeddings,
                type_vocab_size=self.type_vocab_size,
                initializer_range=self.initializer_range,
                embedding_size=self.embedding_size,
            )

            return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

        def create_and_check_mobilebert_model(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
            model = TFMobileBertModel(config=config)
            inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
164
            result = model(inputs)
Vasily Shamporov's avatar
Vasily Shamporov committed
165
166

            inputs = [input_ids, input_mask]
Sylvain Gugger's avatar
Sylvain Gugger committed
167
            result = model(inputs)
Vasily Shamporov's avatar
Vasily Shamporov committed
168

Sylvain Gugger's avatar
Sylvain Gugger committed
169
            result = model(input_ids)
Vasily Shamporov's avatar
Vasily Shamporov committed
170

171
172
            self.parent.assertEqual(
                result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)
Vasily Shamporov's avatar
Vasily Shamporov committed
173
            )
174
            self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
Vasily Shamporov's avatar
Vasily Shamporov committed
175
176
177
178
179
180

        def create_and_check_mobilebert_for_masked_lm(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
            model = TFMobileBertForMaskedLM(config=config)
            inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
181
            result = model(inputs)
182
            self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
Vasily Shamporov's avatar
Vasily Shamporov committed
183
184
185
186
187
188

        def create_and_check_mobilebert_for_next_sequence_prediction(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
            model = TFMobileBertForNextSentencePrediction(config=config)
            inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
189
            result = model(inputs)
190
            self.parent.assertEqual(result.logits.shape, (self.batch_size, 2))
Vasily Shamporov's avatar
Vasily Shamporov committed
191
192
193
194
195
196

        def create_and_check_mobilebert_for_pretraining(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
            model = TFMobileBertForPreTraining(config=config)
            inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
197
            result = model(inputs)
198
199
            self.parent.assertEqual(
                result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size)
Vasily Shamporov's avatar
Vasily Shamporov committed
200
            )
201
            self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2))
Vasily Shamporov's avatar
Vasily Shamporov committed
202
203
204
205
206
207
208

        def create_and_check_mobilebert_for_sequence_classification(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
            config.num_labels = self.num_labels
            model = TFMobileBertForSequenceClassification(config=config)
            inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
209
            result = model(inputs)
210
            self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
Vasily Shamporov's avatar
Vasily Shamporov committed
211
212
213
214
215
216
217
218
219
220
221
222
223
224

        def create_and_check_mobilebert_for_multiple_choice(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
            config.num_choices = self.num_choices
            model = TFMobileBertForMultipleChoice(config=config)
            multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1))
            multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
            multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1))
            inputs = {
                "input_ids": multiple_choice_inputs_ids,
                "attention_mask": multiple_choice_input_mask,
                "token_type_ids": multiple_choice_token_type_ids,
            }
Sylvain Gugger's avatar
Sylvain Gugger committed
225
            result = model(inputs)
226
            self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
Vasily Shamporov's avatar
Vasily Shamporov committed
227
228
229
230
231
232
233

        def create_and_check_mobilebert_for_token_classification(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
            config.num_labels = self.num_labels
            model = TFMobileBertForTokenClassification(config=config)
            inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
234
            result = model(inputs)
235
            self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
Vasily Shamporov's avatar
Vasily Shamporov committed
236
237
238
239
240
241

        def create_and_check_mobilebert_for_question_answering(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
            model = TFMobileBertForQuestionAnswering(config=config)
            inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
242
            result = model(inputs)
243
244
            self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
            self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
Vasily Shamporov's avatar
Vasily Shamporov committed
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298

        def prepare_config_and_inputs_for_common(self):
            config_and_inputs = self.prepare_config_and_inputs()
            (
                config,
                input_ids,
                token_type_ids,
                input_mask,
                sequence_labels,
                token_labels,
                choice_labels,
            ) = config_and_inputs
            inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
            return config, inputs_dict

    def setUp(self):
        self.model_tester = TFMobileBertModelTest.TFMobileBertModelTester(self)
        self.config_tester = ConfigTester(self, config_class=MobileBertConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_mobilebert_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_mobilebert_model(*config_and_inputs)

    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_mobilebert_for_masked_lm(*config_and_inputs)

    def test_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_mobilebert_for_multiple_choice(*config_and_inputs)

    def test_for_next_sequence_prediction(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*config_and_inputs)

    def test_for_pretraining(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_mobilebert_for_pretraining(*config_and_inputs)

    def test_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_mobilebert_for_question_answering(*config_and_inputs)

    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_mobilebert_for_sequence_classification(*config_and_inputs)

    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_mobilebert_for_token_classification(*config_and_inputs)

299
300
301
302
303
304
305
306
307
    def test_model_common_attributes(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        list_lm_models = [TFMobileBertForMaskedLM, TFMobileBertForPreTraining]

        for model_class in self.all_model_classes:
            model = model_class(config)
            assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer)

            if model_class in list_lm_models:
308
                x = model.get_output_embeddings()
309
                assert isinstance(x, tf.keras.layers.Layer)
310
311
312
313
                name = model.get_bias()
                assert isinstance(name, dict)
                for k, v in name.items():
                    assert isinstance(v, tf.Variable)
314
            else:
315
                x = model.get_output_embeddings()
316
                assert x is None
317
318
                name = model.get_bias()
                assert name is None
319

320
    @tooslow
Julien Plu's avatar
Julien Plu committed
321
322
323
    def test_saved_model_creation(self):
        pass

Vasily Shamporov's avatar
Vasily Shamporov committed
324
325
326
    @slow
    def test_model_from_pretrained(self):
        # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
Lysandre Debut's avatar
Lysandre Debut committed
327
        for model_name in ["google/mobilebert-uncased"]:
Vasily Shamporov's avatar
Vasily Shamporov committed
328
329
            model = TFMobileBertModel.from_pretrained(model_name)
            self.assertIsNotNone(model)
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352


@require_tf
class TFMobileBertModelIntegrationTest(unittest.TestCase):
    @slow
    def test_inference_masked_lm(self):
        model = TFMobileBertForPreTraining.from_pretrained("google/mobilebert-uncased")
        input_ids = tf.constant([[0, 1, 2, 3, 4, 5]])
        output = model(input_ids)[0]

        expected_shape = [1, 6, 30522]
        self.assertEqual(output.shape, expected_shape)

        expected_slice = tf.constant(
            [
                [
                    [-4.5919547, -9.248295, -9.645256],
                    [-6.7306175, -6.440284, -6.6052837],
                    [-7.2743506, -6.7847915, -6.024673],
                ]
            ]
        )
        tf.debugging.assert_near(output[:, :3, :3], expected_slice, atol=1e-4)