test_modeling_tf_distilbert.py 10.1 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16

17
18
import unittest

Aymeric Augustin's avatar
Aymeric Augustin committed
19
from transformers import DistilBertConfig, is_tf_available
20
from transformers.testing_utils import require_tf, slow
Aymeric Augustin's avatar
Aymeric Augustin committed
21

Yih-Dar's avatar
Yih-Dar committed
22
23
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
24
from ...test_pipeline_mixin import PipelineTesterMixin
thomwolf's avatar
thomwolf committed
25
26
27


if is_tf_available():
28
    import tensorflow as tf
29

Sylvain Gugger's avatar
Sylvain Gugger committed
30
    from transformers.models.distilbert.modeling_tf_distilbert import (
31
        TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
32
        TFDistilBertForMaskedLM,
33
        TFDistilBertForMultipleChoice,
34
35
        TFDistilBertForQuestionAnswering,
        TFDistilBertForSequenceClassification,
36
        TFDistilBertForTokenClassification,
37
        TFDistilBertModel,
38
    )
thomwolf's avatar
thomwolf committed
39
40


41
42
class TFDistilBertModelTester:
    def __init__(
Lysandre's avatar
Lysandre committed
43
44
        self,
        parent,
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
    ):
        self.parent = parent
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_input_mask = True
        self.use_token_type_ids = False
        self.use_labels = True
        self.vocab_size = 99
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.intermediate_size = 37
        self.hidden_act = "gelu"
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 16
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.scope = None

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
74
            input_mask = random_attention_mask([self.batch_size, self.seq_length])
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = DistilBertConfig(
            vocab_size=self.vocab_size,
            dim=self.hidden_size,
            n_layers=self.num_hidden_layers,
            n_heads=self.num_attention_heads,
            hidden_dim=self.intermediate_size,
            hidden_act=self.hidden_act,
            dropout=self.hidden_dropout_prob,
            attention_dropout=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            initializer_range=self.initializer_range,
        )

        return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels

    def create_and_check_distilbert_model(
        self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFDistilBertModel(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask}

Sylvain Gugger's avatar
Sylvain Gugger committed
105
        result = model(inputs)
106
107
108

        inputs = [input_ids, input_mask]

Sylvain Gugger's avatar
Sylvain Gugger committed
109
        result = model(inputs)
110

111
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
112
113
114
115
116
117

    def create_and_check_distilbert_for_masked_lm(
        self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFDistilBertForMaskedLM(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask}
Sylvain Gugger's avatar
Sylvain Gugger committed
118
        result = model(inputs)
119
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
120
121
122
123
124

    def create_and_check_distilbert_for_question_answering(
        self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFDistilBertForQuestionAnswering(config=config)
125
126
127
        inputs = {
            "input_ids": input_ids,
            "attention_mask": input_mask,
128
        }
Sylvain Gugger's avatar
Sylvain Gugger committed
129
        result = model(inputs)
130
131
        self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
        self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
132
133
134
135
136
137
138

    def create_and_check_distilbert_for_sequence_classification(
        self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = TFDistilBertForSequenceClassification(config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask}
Sylvain Gugger's avatar
Sylvain Gugger committed
139
        result = model(inputs)
140
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
141

142
143
144
145
146
147
148
149
150
151
152
    def create_and_check_distilbert_for_multiple_choice(
        self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_choices = self.num_choices
        model = TFDistilBertForMultipleChoice(config)
        multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1))
        multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
        inputs = {
            "input_ids": multiple_choice_inputs_ids,
            "attention_mask": multiple_choice_input_mask,
        }
Sylvain Gugger's avatar
Sylvain Gugger committed
153
        result = model(inputs)
154
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
155
156
157
158
159
160
161

    def create_and_check_distilbert_for_token_classification(
        self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = TFDistilBertForTokenClassification(config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask}
Sylvain Gugger's avatar
Sylvain Gugger committed
162
        result = model(inputs)
163
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
164

165
166
167
168
169
170
171
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (config, input_ids, input_mask, sequence_labels, token_labels, choice_labels) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
        return config, inputs_dict


172
@require_tf
173
class TFDistilBertModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
174
175
176
177
178
179
    all_model_classes = (
        (
            TFDistilBertModel,
            TFDistilBertForMaskedLM,
            TFDistilBertForQuestionAnswering,
            TFDistilBertForSequenceClassification,
180
181
            TFDistilBertForTokenClassification,
            TFDistilBertForMultipleChoice,
182
183
184
185
        )
        if is_tf_available()
        else None
    )
186
187
188
189
190
191
192
193
194
195
196
197
    pipeline_model_mapping = (
        {
            "feature-extraction": TFDistilBertModel,
            "fill-mask": TFDistilBertForMaskedLM,
            "question-answering": TFDistilBertForQuestionAnswering,
            "text-classification": TFDistilBertForSequenceClassification,
            "token-classification": TFDistilBertForTokenClassification,
            "zero-shot": TFDistilBertForSequenceClassification,
        }
        if is_tf_available()
        else {}
    )
198
    test_head_masking = False
199
    test_onnx = False
thomwolf's avatar
thomwolf committed
200
201

    def setUp(self):
202
        self.model_tester = TFDistilBertModelTester(self)
thomwolf's avatar
thomwolf committed
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
        self.config_tester = ConfigTester(self, config_class=DistilBertConfig, dim=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_distilbert_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_distilbert_model(*config_and_inputs)

    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_distilbert_for_masked_lm(*config_and_inputs)

    def test_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_distilbert_for_question_answering(*config_and_inputs)

    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_distilbert_for_sequence_classification(*config_and_inputs)

224
225
226
227
228
229
230
231
    def test_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_distilbert_for_multiple_choice(*config_and_inputs)

    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_distilbert_for_token_classification(*config_and_inputs)

232
233
234
235
236
    @slow
    def test_model_from_pretrained(self):
        for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]):
            model = TFDistilBertModel.from_pretrained(model_name)
            self.assertIsNotNone(model)
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259


@require_tf
class TFDistilBertModelIntegrationTest(unittest.TestCase):
    @slow
    def test_inference_masked_lm(self):
        model = TFDistilBertModel.from_pretrained("distilbert-base-uncased")
        input_ids = tf.constant([[0, 1, 2, 3, 4, 5]])
        output = model(input_ids)[0]

        expected_shape = [1, 6, 768]
        self.assertEqual(output.shape, expected_shape)

        expected_slice = tf.constant(
            [
                [
                    [0.19261885, -0.13732955, 0.4119799],
                    [0.22150156, -0.07422661, 0.39037204],
                    [0.22756018, -0.0896414, 0.3701467],
                ]
            ]
        )
        tf.debugging.assert_near(output[:, :3, :3], expected_slice, atol=1e-4)