"host/vscode:/vscode.git/clone" did not exist on "24c8728942ac567ea94e29fabaeb640524d87400"
import_utils.py 43.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Import utilities: Utilities related to imports and our lazy inits.
"""

18
import importlib.metadata
19
20
21
import importlib.util
import json
import os
22
import shutil
玩火's avatar
玩火 committed
23
import subprocess
24
import sys
25
import warnings
26
from collections import OrderedDict
27
from functools import lru_cache
28
29
from itertools import chain
from types import ModuleType
30
from typing import Any, Tuple, Union
31
32
33
34
35
36
37
38

from packaging import version

from . import logging


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

39

Yih-Dar's avatar
Yih-Dar committed
40
# TODO: This doesn't work for all packages (`bs4`, `faiss`, etc.) Talk to Sylvain to see how to do with it better.
41
42
43
44
45
46
def _is_package_available(pkg_name: str, return_version: bool = False) -> Union[Tuple[bool, str], bool]:
    # Check we're not importing a "pkg_name" directory somewhere but the actual library by trying to grab the version
    package_exists = importlib.util.find_spec(pkg_name) is not None
    package_version = "N/A"
    if package_exists:
        try:
47
            package_version = importlib.metadata.version(pkg_name)
48
            package_exists = True
49
        except importlib.metadata.PackageNotFoundError:
50
51
52
53
54
55
56
57
            package_exists = False
        logger.debug(f"Detected {pkg_name} version {package_version}")
    if return_version:
        return package_exists, package_version
    else:
        return package_exists


58
59
60
61
62
63
64
ENV_VARS_TRUE_VALUES = {"1", "ON", "YES", "TRUE"}
ENV_VARS_TRUE_AND_AUTO_VALUES = ENV_VARS_TRUE_VALUES.union({"AUTO"})

USE_TF = os.environ.get("USE_TF", "AUTO").upper()
USE_TORCH = os.environ.get("USE_TORCH", "AUTO").upper()
USE_JAX = os.environ.get("USE_FLAX", "AUTO").upper()

65
66
FORCE_TF_AVAILABLE = os.environ.get("FORCE_TF_AVAILABLE", "AUTO").upper()

67
68
69
70
71
72
73
# This is the version of torch required to run torch.fx features and torch.onnx with dictionary inputs.
TORCH_FX_REQUIRED_VERSION = version.parse("1.10")


_accelerate_available, _accelerate_version = _is_package_available("accelerate", return_version=True)
_apex_available = _is_package_available("apex")
_bitsandbytes_available = _is_package_available("bitsandbytes")
74
# `importlib.metadata.version` doesn't work with `bs4` but `beautifulsoup4`. For `importlib.util.find_spec`, reversed.
Yih-Dar's avatar
Yih-Dar committed
75
_bs4_available = importlib.util.find_spec("bs4") is not None
76
77
78
79
_coloredlogs_available = _is_package_available("coloredlogs")
_datasets_available = _is_package_available("datasets")
_decord_available = importlib.util.find_spec("decord") is not None
_detectron2_available = _is_package_available("detectron2")
Yih-Dar's avatar
Yih-Dar committed
80
81
82
# We need to check both `faiss` and `faiss-cpu`.
_faiss_available = importlib.util.find_spec("faiss") is not None
try:
83
    _faiss_version = importlib.metadata.version("faiss")
Yih-Dar's avatar
Yih-Dar committed
84
    logger.debug(f"Successfully imported faiss version {_faiss_version}")
85
except importlib.metadata.PackageNotFoundError:
Yih-Dar's avatar
Yih-Dar committed
86
    try:
87
        _faiss_version = importlib.metadata.version("faiss-cpu")
Yih-Dar's avatar
Yih-Dar committed
88
        logger.debug(f"Successfully imported faiss version {_faiss_version}")
89
    except importlib.metadata.PackageNotFoundError:
Yih-Dar's avatar
Yih-Dar committed
90
        _faiss_available = False
91
92
93
_ftfy_available = _is_package_available("ftfy")
_ipex_available, _ipex_version = _is_package_available("intel_extension_for_pytorch", return_version=True)
_jieba_available = _is_package_available("jieba")
94
_jinja_available = _is_package_available("jinja2")
95
96
97
98
99
100
101
_kenlm_available = _is_package_available("kenlm")
_keras_nlp_available = _is_package_available("keras_nlp")
_librosa_available = _is_package_available("librosa")
_natten_available = _is_package_available("natten")
_onnx_available = _is_package_available("onnx")
_openai_available = _is_package_available("openai")
_optimum_available = _is_package_available("optimum")
Marc Sun's avatar
Marc Sun committed
102
_auto_gptq_available = _is_package_available("auto_gptq")
103
104
105
106
107
108
109
_pandas_available = _is_package_available("pandas")
_peft_available = _is_package_available("peft")
_phonemizer_available = _is_package_available("phonemizer")
_psutil_available = _is_package_available("psutil")
_py3nvml_available = _is_package_available("py3nvml")
_pyctcdecode_available = _is_package_available("pyctcdecode")
_pytesseract_available = _is_package_available("pytesseract")
110
_pytest_available = _is_package_available("pytest")
111
112
113
114
115
116
_pytorch_quantization_available = _is_package_available("pytorch_quantization")
_rjieba_available = _is_package_available("rjieba")
_sacremoses_available = _is_package_available("sacremoses")
_safetensors_available = _is_package_available("safetensors")
_scipy_available = _is_package_available("scipy")
_sentencepiece_available = _is_package_available("sentencepiece")
117
_is_seqio_available = _is_package_available("seqio")
118
119
120
_sklearn_available = importlib.util.find_spec("sklearn") is not None
if _sklearn_available:
    try:
121
122
        importlib.metadata.version("scikit-learn")
    except importlib.metadata.PackageNotFoundError:
123
        _sklearn_available = False
124
_smdistributed_available = importlib.util.find_spec("smdistributed") is not None
125
126
127
128
129
130
131
132
133
134
135
136
137
_soundfile_available = _is_package_available("soundfile")
_spacy_available = _is_package_available("spacy")
_sudachipy_available = _is_package_available("sudachipy")
_tensorflow_probability_available = _is_package_available("tensorflow_probability")
_tensorflow_text_available = _is_package_available("tensorflow_text")
_tf2onnx_available = _is_package_available("tf2onnx")
_timm_available = _is_package_available("timm")
_tokenizers_available = _is_package_available("tokenizers")
_torchaudio_available = _is_package_available("torchaudio")
_torchdistx_available = _is_package_available("torchdistx")
_torchvision_available = _is_package_available("torchvision")


138
_torch_version = "N/A"
139
_torch_available = False
140
if USE_TORCH in ENV_VARS_TRUE_AND_AUTO_VALUES and USE_TF not in ENV_VARS_TRUE_VALUES:
141
    _torch_available, _torch_version = _is_package_available("torch", return_version=True)
142
143
144
145
146
147
else:
    logger.info("Disabling PyTorch because USE_TF is set")
    _torch_available = False


_tf_version = "N/A"
148
_tf_available = False
149
150
if FORCE_TF_AVAILABLE in ENV_VARS_TRUE_VALUES:
    _tf_available = True
151
else:
152
    if USE_TF in ENV_VARS_TRUE_AND_AUTO_VALUES and USE_TORCH not in ENV_VARS_TRUE_VALUES:
153
154
155
        # Note: _is_package_available("tensorflow") fails for tensorflow-cpu. Please test any changes to the line below
        # with tensorflow-cpu to make sure it still works!
        _tf_available = importlib.util.find_spec("tensorflow") is not None
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
        if _tf_available:
            candidates = (
                "tensorflow",
                "tensorflow-cpu",
                "tensorflow-gpu",
                "tf-nightly",
                "tf-nightly-cpu",
                "tf-nightly-gpu",
                "intel-tensorflow",
                "intel-tensorflow-avx512",
                "tensorflow-rocm",
                "tensorflow-macos",
                "tensorflow-aarch64",
            )
            _tf_version = None
            # For the metadata, we have to look for both tensorflow and tensorflow-cpu
            for pkg in candidates:
                try:
174
                    _tf_version = importlib.metadata.version(pkg)
175
                    break
176
                except importlib.metadata.PackageNotFoundError:
177
178
179
180
181
182
183
184
185
186
                    pass
            _tf_available = _tf_version is not None
        if _tf_available:
            if version.parse(_tf_version) < version.parse("2"):
                logger.info(
                    f"TensorFlow found but with version {_tf_version}. Transformers requires version 2 minimum."
                )
                _tf_available = False
    else:
        logger.info("Disabling Tensorflow because USE_TORCH is set")
187
188


Susnato Dhar's avatar
Susnato Dhar committed
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
_essentia_available = importlib.util.find_spec("essentia") is not None
try:
    _essentia_version = importlib.metadata.version("essentia")
    logger.debug(f"Successfully imported essentia version {_essentia_version}")
except importlib.metadata.PackageNotFoundError:
    _essentia_version = False


_pretty_midi_available = importlib.util.find_spec("pretty_midi") is not None
try:
    _pretty_midi_version = importlib.metadata.version("pretty_midi")
    logger.debug(f"Successfully imported pretty_midi version {_pretty_midi_version}")
except importlib.metadata.PackageNotFoundError:
    _pretty_midi_available = False


205
206
207
208
209
210
ccl_version = "N/A"
_is_ccl_available = (
    importlib.util.find_spec("torch_ccl") is not None
    or importlib.util.find_spec("oneccl_bindings_for_pytorch") is not None
)
try:
211
    ccl_version = importlib.metadata.version("oneccl_bind_pt")
212
    logger.debug(f"Detected oneccl_bind_pt version {ccl_version}")
213
except importlib.metadata.PackageNotFoundError:
214
    _is_ccl_available = False
215

216

217
218
219
220
221
222
223
224
225
226
_flax_available = False
if USE_JAX in ENV_VARS_TRUE_AND_AUTO_VALUES:
    _flax_available, _flax_version = _is_package_available("flax", return_version=True)
    if _flax_available:
        _jax_available, _jax_version = _is_package_available("jax", return_version=True)
        if _jax_available:
            logger.info(f"JAX version {_jax_version}, Flax version {_flax_version} available.")
        else:
            _flax_available = _jax_available = False
            _jax_version = _flax_version = "N/A"
227

228
229
230
231
232
233
234
235

_torch_fx_available = False
if _torch_available:
    torch_version = version.parse(_torch_version)
    _torch_fx_available = (torch_version.major, torch_version.minor) >= (
        TORCH_FX_REQUIRED_VERSION.major,
        TORCH_FX_REQUIRED_VERSION.minor,
    )
236
237


238
def is_kenlm_available():
239
    return _kenlm_available
240
241


242
243
244
245
def is_torch_available():
    return _torch_available


246
247
248
249
def get_torch_version():
    return _torch_version


NielsRogge's avatar
NielsRogge committed
250
def is_torchvision_available():
251
    return _torchvision_available
NielsRogge's avatar
NielsRogge committed
252
253


254
255
256
257
258
259
260
261
def is_pyctcdecode_available():
    return _pyctcdecode_available


def is_librosa_available():
    return _librosa_available


Susnato Dhar's avatar
Susnato Dhar committed
262
263
264
265
266
267
268
269
def is_essentia_available():
    return _essentia_available


def is_pretty_midi_available():
    return _pretty_midi_available


270
271
272
273
274
275
276
277
278
def is_torch_cuda_available():
    if is_torch_available():
        import torch

        return torch.cuda.is_available()
    else:
        return False


279
280
281
282
283
284
285
286
287
def is_torch_mps_available():
    if is_torch_available():
        import torch

        if hasattr(torch.backends, "mps"):
            return torch.backends.mps.is_available()
    return False


288
def is_torch_bf16_gpu_available():
289
290
291
292
293
294
295
296
    if not is_torch_available():
        return False

    import torch

    # since currently no utility function is available we build our own.
    # some bits come from https://github.com/pytorch/pytorch/blob/2289a12f21c54da93bf5d696e3f9aea83dd9c10d/torch/testing/_internal/common_cuda.py#L51
    # with additional check for torch version
Yih-Dar's avatar
Yih-Dar committed
297
298
299
300
    # to succeed: (torch is required to be >= 1.10 anyway)
    # 1. the hardware needs to support bf16 (GPU arch >= Ampere, or CPU)
    # 2. if using gpu, CUDA >= 11
    # 3. torch.autocast exists
301
302
    # XXX: one problem here is that it may give invalid results on mixed gpus setup, so it's
    # really only correct for the 0th gpu (or currently set default device if different from 0)
303
304
    if torch.cuda.is_available() and torch.version.cuda is not None:
        if torch.cuda.get_device_properties(torch.cuda.current_device()).major < 8:
305
            return False
306
        if int(torch.version.cuda.split(".")[0]) < 11:
307
            return False
308
        if not hasattr(torch.cuda.amp, "autocast"):
309
            return False
310
    else:
311
312
313
314
315
316
317
318
319
320
321
        return False

    return True


def is_torch_bf16_cpu_available():
    if not is_torch_available():
        return False

    import torch

322
323
324
325
    try:
        # multiple levels of AttributeError depending on the pytorch version so do them all in one check
        _ = torch.cpu.amp.autocast
    except AttributeError:
326
        return False
327

328
329
330
331
    return True


def is_torch_bf16_available():
332
333
334
335
336
337
338
339
    # the original bf16 check was for gpu only, but later a cpu/bf16 combo has emerged so this util
    # has become ambiguous and therefore deprecated
    warnings.warn(
        "The util is_torch_bf16_available is deprecated, please use is_torch_bf16_gpu_available "
        "or is_torch_bf16_cpu_available instead according to whether it's used with cpu or gpu",
        FutureWarning,
    )
    return is_torch_bf16_gpu_available()
340
341
342
343
344
345
346
347
348
349
350
351
352
353


def is_torch_tf32_available():
    if not is_torch_available():
        return False

    import torch

    if not torch.cuda.is_available() or torch.version.cuda is None:
        return False
    if torch.cuda.get_device_properties(torch.cuda.current_device()).major < 8:
        return False
    if int(torch.version.cuda.split(".")[0]) < 11:
        return False
354
    if version.parse(version.parse(torch.__version__).base_version) < version.parse("1.7"):
355
356
357
358
359
360
361
362
363
        return False

    return True


def is_torch_fx_available():
    return _torch_fx_available


364
def is_peft_available():
365
    return _peft_available
366
367


NielsRogge's avatar
NielsRogge committed
368
def is_bs4_available():
369
    return _bs4_available
NielsRogge's avatar
NielsRogge committed
370
371


372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
def is_tf_available():
    return _tf_available


def is_coloredlogs_available():
    return _coloredlogs_available


def is_tf2onnx_available():
    return _tf2onnx_available


def is_onnx_available():
    return _onnx_available


Sylvain Gugger's avatar
Sylvain Gugger committed
388
def is_openai_available():
389
    return _openai_available
Sylvain Gugger's avatar
Sylvain Gugger committed
390
391


392
393
394
395
396
397
398
399
def is_flax_available():
    return _flax_available


def is_ftfy_available():
    return _ftfy_available


400
@lru_cache()
401
402
def is_torch_tpu_available(check_device=True):
    "Checks if `torch_xla` is installed and potentially if a TPU is in the environment"
403
404
    if not _torch_available:
        return False
405
406
407
408
409
    if importlib.util.find_spec("torch_xla") is not None:
        if check_device:
            # We need to check if `xla_device` can be found, will raise a RuntimeError if not
            try:
                import torch_xla.core.xla_model as xm
410

411
412
413
414
                _ = xm.xla_device()
                return True
            except RuntimeError:
                return False
415
        return True
416
    return False
417
418


419
420
421
422
423
424
425
@lru_cache()
def is_torch_neuroncore_available(check_device=True):
    if importlib.util.find_spec("torch_neuronx") is not None:
        return is_torch_tpu_available(check_device)
    return False


426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
@lru_cache()
def is_torch_npu_available(check_device=False):
    "Checks if `torch_npu` is installed and potentially if a NPU is in the environment"
    if not _torch_available or importlib.util.find_spec("torch_npu") is None:
        return False

    import torch
    import torch_npu  # noqa: F401

    if check_device:
        try:
            # Will raise a RuntimeError if no NPU is found
            _ = torch.npu.device_count()
            return torch.npu.is_available()
        except RuntimeError:
            return False
    return hasattr(torch, "npu") and torch.npu.is_available()


445
def is_torchdynamo_available():
446
447
448
449
450
451
452
453
    if not is_torch_available():
        return False
    try:
        import torch._dynamo as dynamo  # noqa: F401

        return True
    except Exception:
        return False
454
455


456
457
458
459
460
461
def is_torch_compile_available():
    if not is_torch_available():
        return False

    import torch

462
463
    # We don't do any version check here to support nighlies marked as 1.14. Ultimately needs to check version against
    # 2.0 but let's do it later.
464
465
466
    return hasattr(torch, "compile")


467
468
469
470
471
472
473
474
475
476
477
def is_torchdynamo_compiling():
    if not is_torch_available():
        return False
    try:
        import torch._dynamo as dynamo  # noqa: F401

        return dynamo.is_compiling()
    except Exception:
        return False


478
479
480
481
482
483
def is_torch_tensorrt_fx_available():
    if importlib.util.find_spec("torch_tensorrt") is None:
        return False
    return importlib.util.find_spec("torch_tensorrt.fx") is not None


484
485
486
487
488
489
490
491
492
def is_datasets_available():
    return _datasets_available


def is_detectron2_available():
    return _detectron2_available


def is_rjieba_available():
493
    return _rjieba_available
494
495
496


def is_psutil_available():
497
    return _psutil_available
498
499
500


def is_py3nvml_available():
501
    return _py3nvml_available
502
503


504
def is_sacremoses_available():
505
    return _sacremoses_available
506
507


508
def is_apex_available():
509
    return _apex_available
510
511


512
def is_ninja_available():
玩火's avatar
玩火 committed
513
514
515
516
517
518
519
520
521
522
    r"""
    Code comes from *torch.utils.cpp_extension.is_ninja_available()*. Returns `True` if the
    [ninja](https://ninja-build.org/) build system is available on the system, `False` otherwise.
    """
    try:
        subprocess.check_output("ninja --version".split())
    except Exception:
        return False
    else:
        return True
523
524


525
def is_ipex_available():
526
527
528
    def get_major_and_minor_from_version(full_version):
        return str(version.parse(full_version).major) + "." + str(version.parse(full_version).minor)

529
    if not is_torch_available() or not _ipex_available:
530
        return False
531

532
533
534
535
536
537
538
539
540
    torch_major_and_minor = get_major_and_minor_from_version(_torch_version)
    ipex_major_and_minor = get_major_and_minor_from_version(_ipex_version)
    if torch_major_and_minor != ipex_major_and_minor:
        logger.warning(
            f"Intel Extension for PyTorch {ipex_major_and_minor} needs to work with PyTorch {ipex_major_and_minor}.*,"
            f" but PyTorch {_torch_version} is found. Please switch to the matching version and run again."
        )
        return False
    return True
541
542


543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
@lru_cache
def is_torch_xpu_available(check_device=False):
    "Checks if `intel_extension_for_pytorch` is installed and potentially if a XPU is in the environment"
    if not is_ipex_available():
        return False

    import intel_extension_for_pytorch  # noqa: F401
    import torch

    if check_device:
        try:
            # Will raise a RuntimeError if no XPU  is found
            _ = torch.xpu.device_count()
            return torch.xpu.is_available()
        except RuntimeError:
            return False
    return hasattr(torch, "xpu") and torch.xpu.is_available()


562
def is_bitsandbytes_available():
563
564
565
566
567
568
569
570
    if not is_torch_available():
        return False

    # bitsandbytes throws an error if cuda is not available
    # let's avoid that by adding a simple check
    import torch

    return _bitsandbytes_available and torch.cuda.is_available()
571
572


573
def is_torchdistx_available():
574
    return _torchdistx_available
575
576


577
578
579
580
581
def is_faiss_available():
    return _faiss_available


def is_scipy_available():
582
    return _scipy_available
583
584
585


def is_sklearn_available():
586
    return _sklearn_available
587
588
589


def is_sentencepiece_available():
590
    return _sentencepiece_available
591
592


593
594
595
596
def is_seqio_available():
    return _is_seqio_available


597
598
599
600
601
602
def is_protobuf_available():
    if importlib.util.find_spec("google") is None:
        return False
    return importlib.util.find_spec("google.protobuf") is not None


603
604
605
def is_accelerate_available(min_version: str = None):
    if min_version is not None:
        return _accelerate_available and version.parse(_accelerate_version) >= version.parse(min_version)
606
    return _accelerate_available
607
608


609
def is_fsdp_available(min_version: str = "1.12.0"):
610
    return is_torch_available() and version.parse(_torch_version) >= version.parse(min_version)
611
612


613
def is_optimum_available():
614
    return _optimum_available
615
616


Marc Sun's avatar
Marc Sun committed
617
618
619
620
def is_auto_gptq_available():
    return _auto_gptq_available


621
def is_optimum_neuron_available():
622
    return _optimum_available and _is_package_available("optimum.neuron")
623
624


625
def is_safetensors_available():
626
    return _safetensors_available
627
628


629
def is_tokenizers_available():
630
    return _tokenizers_available
631
632
633


def is_vision_available():
634
635
636
    _pil_available = importlib.util.find_spec("PIL") is not None
    if _pil_available:
        try:
637
638
            package_version = importlib.metadata.version("Pillow")
        except importlib.metadata.PackageNotFoundError:
Yih-Dar's avatar
Yih-Dar committed
639
640
641
642
            try:
                package_version = importlib.metadata.version("Pillow-SIMD")
            except importlib.metadata.PackageNotFoundError:
                return False
643
644
        logger.debug(f"Detected PIL version {package_version}")
    return _pil_available
645
646
647


def is_pytesseract_available():
648
    return _pytesseract_available
649
650


651
652
653
654
def is_pytest_available():
    return _pytest_available


655
def is_spacy_available():
656
    return _spacy_available
657
658


659
def is_tensorflow_text_available():
660
    return is_tf_available() and _tensorflow_text_available
661
662


663
def is_keras_nlp_available():
664
    return is_tensorflow_text_available() and _keras_nlp_available
665
666


667
668
669
670
671
672
673
674
def is_in_notebook():
    try:
        # Test adapted from tqdm.autonotebook: https://github.com/tqdm/tqdm/blob/master/tqdm/autonotebook.py
        get_ipython = sys.modules["IPython"].get_ipython
        if "IPKernelApp" not in get_ipython().config:
            raise ImportError("console")
        if "VSCODE_PID" in os.environ:
            raise ImportError("vscode")
675
676
677
        if "DATABRICKS_RUNTIME_VERSION" in os.environ and os.environ["DATABRICKS_RUNTIME_VERSION"] < "11.0":
            # Databricks Runtime 11.0 and above uses IPython kernel by default so it should be compatible with Jupyter notebook
            # https://docs.microsoft.com/en-us/azure/databricks/notebooks/ipython-kernel
678
            raise ImportError("databricks")
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693

        return importlib.util.find_spec("IPython") is not None
    except (AttributeError, ImportError, KeyError):
        return False


def is_pytorch_quantization_available():
    return _pytorch_quantization_available


def is_tensorflow_probability_available():
    return _tensorflow_probability_available


def is_pandas_available():
694
    return _pandas_available
695
696
697
698
699
700
701
702
703
704
705
706
707


def is_sagemaker_dp_enabled():
    # Get the sagemaker specific env variable.
    sagemaker_params = os.getenv("SM_FRAMEWORK_PARAMS", "{}")
    try:
        # Parse it and check the field "sagemaker_distributed_dataparallel_enabled".
        sagemaker_params = json.loads(sagemaker_params)
        if not sagemaker_params.get("sagemaker_distributed_dataparallel_enabled", False):
            return False
    except json.JSONDecodeError:
        return False
    # Lastly, check if the `smdistributed` module is present.
708
    return _smdistributed_available
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731


def is_sagemaker_mp_enabled():
    # Get the sagemaker specific mp parameters from smp_options variable.
    smp_options = os.getenv("SM_HP_MP_PARAMETERS", "{}")
    try:
        # Parse it and check the field "partitions" is included, it is required for model parallel.
        smp_options = json.loads(smp_options)
        if "partitions" not in smp_options:
            return False
    except json.JSONDecodeError:
        return False

    # Get the sagemaker specific framework parameters from mpi_options variable.
    mpi_options = os.getenv("SM_FRAMEWORK_PARAMS", "{}")
    try:
        # Parse it and check the field "sagemaker_distributed_dataparallel_enabled".
        mpi_options = json.loads(mpi_options)
        if not mpi_options.get("sagemaker_mpi_enabled", False):
            return False
    except json.JSONDecodeError:
        return False
    # Lastly, check if the `smdistributed` module is present.
732
    return _smdistributed_available
733
734
735
736
737
738
739
740
741
742
743
744
745
746


def is_training_run_on_sagemaker():
    return "SAGEMAKER_JOB_NAME" in os.environ


def is_soundfile_availble():
    return _soundfile_available


def is_timm_available():
    return _timm_available


747
748
749
750
def is_natten_available():
    return _natten_available


751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
def is_torchaudio_available():
    return _torchaudio_available


def is_speech_available():
    # For now this depends on torchaudio but the exact dependency might evolve in the future.
    return _torchaudio_available


def is_phonemizer_available():
    return _phonemizer_available


def torch_only_method(fn):
    def wrapper(*args, **kwargs):
        if not _torch_available:
            raise ImportError(
                "You need to install pytorch to use this method or class, "
                "or activate it with environment variables USE_TORCH=1 and USE_TF=0."
            )
        else:
            return fn(*args, **kwargs)

    return wrapper


777
778
779
780
def is_ccl_available():
    return _is_ccl_available


781
def is_decord_available():
782
    return _decord_available
783
784


785
def is_sudachi_available():
786
    return _sudachipy_available
787
788
789


def is_jumanpp_available():
Hao Wang's avatar
Hao Wang committed
790
    return (importlib.util.find_spec("rhoknp") is not None) and (shutil.which("jumanpp") is not None)
791
792


793
794
795
796
def is_cython_available():
    return importlib.util.find_spec("pyximport") is not None


797
798
799
800
def is_jieba_available():
    return _jieba_available


801
802
803
804
def is_jinja_available():
    return _jinja_available


805
806
807
808
809
810
811
812
813
814
815
816
817
818
# docstyle-ignore
DATASETS_IMPORT_ERROR = """
{0} requires the 🤗 Datasets library but it was not found in your environment. You can install it with:
```
pip install datasets
```
In a notebook or a colab, you can install it by executing a cell with
```
!pip install datasets
```
then restarting your kernel.

Note that if you have a local folder named `datasets` or a local python file named `datasets.py` in your current
working directory, python may try to import this instead of the 🤗 Datasets library. You should rename this folder or
819
that python file if that's the case. Please note that you may need to restart your runtime after installation.
820
821
822
823
824
825
826
827
828
829
830
831
832
"""


# docstyle-ignore
TOKENIZERS_IMPORT_ERROR = """
{0} requires the 🤗 Tokenizers library but it was not found in your environment. You can install it with:
```
pip install tokenizers
```
In a notebook or a colab, you can install it by executing a cell with
```
!pip install tokenizers
```
833
Please note that you may need to restart your runtime after installation.
834
835
836
837
838
839
840
"""


# docstyle-ignore
SENTENCEPIECE_IMPORT_ERROR = """
{0} requires the SentencePiece library but it was not found in your environment. Checkout the instructions on the
installation page of its repo: https://github.com/google/sentencepiece#installation and follow the ones
841
that match your environment. Please note that you may need to restart your runtime after installation.
842
843
844
845
846
847
848
"""


# docstyle-ignore
PROTOBUF_IMPORT_ERROR = """
{0} requires the protobuf library but it was not found in your environment. Checkout the instructions on the
installation page of its repo: https://github.com/protocolbuffers/protobuf/tree/master/python#installation and follow the ones
849
that match your environment. Please note that you may need to restart your runtime after installation.
850
851
852
853
854
855
856
"""


# docstyle-ignore
FAISS_IMPORT_ERROR = """
{0} requires the faiss library but it was not found in your environment. Checkout the instructions on the
installation page of its repo: https://github.com/facebookresearch/faiss/blob/master/INSTALL.md and follow the ones
857
that match your environment. Please note that you may need to restart your runtime after installation.
858
859
860
861
862
863
864
"""


# docstyle-ignore
PYTORCH_IMPORT_ERROR = """
{0} requires the PyTorch library but it was not found in your environment. Checkout the instructions on the
installation page: https://pytorch.org/get-started/locally/ and follow the ones that match your environment.
865
Please note that you may need to restart your runtime after installation.
866
867
"""

NielsRogge's avatar
NielsRogge committed
868
869
870
871
872
873
874
875

# docstyle-ignore
TORCHVISION_IMPORT_ERROR = """
{0} requires the Torchvision library but it was not found in your environment. Checkout the instructions on the
installation page: https://pytorch.org/get-started/locally/ and follow the ones that match your environment.
Please note that you may need to restart your runtime after installation.
"""

876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
# docstyle-ignore
PYTORCH_IMPORT_ERROR_WITH_TF = """
{0} requires the PyTorch library but it was not found in your environment.
However, we were able to find a TensorFlow installation. TensorFlow classes begin
with "TF", but are otherwise identically named to our PyTorch classes. This
means that the TF equivalent of the class you tried to import would be "TF{0}".
If you want to use TensorFlow, please use TF classes instead!

If you really do want to use PyTorch please go to
https://pytorch.org/get-started/locally/ and follow the instructions that
match your environment.
"""

# docstyle-ignore
TF_IMPORT_ERROR_WITH_PYTORCH = """
{0} requires the TensorFlow library but it was not found in your environment.
However, we were able to find a PyTorch installation. PyTorch classes do not begin
with "TF", but are otherwise identically named to our TF classes.
If you want to use PyTorch, please use those classes instead!

If you really do want to use TensorFlow, please follow the instructions on the
installation page https://www.tensorflow.org/install that match your environment.
"""

NielsRogge's avatar
NielsRogge committed
900
901
902
# docstyle-ignore
BS4_IMPORT_ERROR = """
{0} requires the Beautiful Soup library but it was not found in your environment. You can install it with pip:
903
`pip install beautifulsoup4`. Please note that you may need to restart your runtime after installation.
NielsRogge's avatar
NielsRogge committed
904
905
"""

906
907
908
909
910
911
912
913
914
915
916

# docstyle-ignore
SKLEARN_IMPORT_ERROR = """
{0} requires the scikit-learn library but it was not found in your environment. You can install it with:
```
pip install -U scikit-learn
```
In a notebook or a colab, you can install it by executing a cell with
```
!pip install -U scikit-learn
```
917
Please note that you may need to restart your runtime after installation.
918
919
920
921
922
923
924
"""


# docstyle-ignore
TENSORFLOW_IMPORT_ERROR = """
{0} requires the TensorFlow library but it was not found in your environment. Checkout the instructions on the
installation page: https://www.tensorflow.org/install and follow the ones that match your environment.
925
Please note that you may need to restart your runtime after installation.
926
927
928
929
930
931
932
"""


# docstyle-ignore
DETECTRON2_IMPORT_ERROR = """
{0} requires the detectron2 library but it was not found in your environment. Checkout the instructions on the
installation page: https://github.com/facebookresearch/detectron2/blob/master/INSTALL.md and follow the ones
933
that match your environment. Please note that you may need to restart your runtime after installation.
934
935
936
937
938
939
940
"""


# docstyle-ignore
FLAX_IMPORT_ERROR = """
{0} requires the FLAX library but it was not found in your environment. Checkout the instructions on the
installation page: https://github.com/google/flax and follow the ones that match your environment.
941
Please note that you may need to restart your runtime after installation.
942
943
944
945
946
947
"""

# docstyle-ignore
FTFY_IMPORT_ERROR = """
{0} requires the ftfy library but it was not found in your environment. Checkout the instructions on the
installation section: https://github.com/rspeer/python-ftfy/tree/master#installing and follow the ones
948
that match your environment. Please note that you may need to restart your runtime after installation.
949
950
951
952
953
954
"""

# docstyle-ignore
PYTORCH_QUANTIZATION_IMPORT_ERROR = """
{0} requires the pytorch-quantization library but it was not found in your environment. You can install it with pip:
`pip install pytorch-quantization --extra-index-url https://pypi.ngc.nvidia.com`
955
Please note that you may need to restart your runtime after installation.
956
957
958
959
960
"""

# docstyle-ignore
TENSORFLOW_PROBABILITY_IMPORT_ERROR = """
{0} requires the tensorflow_probability library but it was not found in your environment. You can install it with pip as
961
explained here: https://github.com/tensorflow/probability. Please note that you may need to restart your runtime after installation.
962
963
"""

964
965
966
967
# docstyle-ignore
TENSORFLOW_TEXT_IMPORT_ERROR = """
{0} requires the tensorflow_text library but it was not found in your environment. You can install it with pip as
explained here: https://www.tensorflow.org/text/guide/tf_text_intro.
968
Please note that you may need to restart your runtime after installation.
969
970
"""

971
972
973
974
975

# docstyle-ignore
PANDAS_IMPORT_ERROR = """
{0} requires the pandas library but it was not found in your environment. You can install it with pip as
explained here: https://pandas.pydata.org/pandas-docs/stable/getting_started/install.html.
976
Please note that you may need to restart your runtime after installation.
977
978
979
980
981
982
"""


# docstyle-ignore
PHONEMIZER_IMPORT_ERROR = """
{0} requires the phonemizer library but it was not found in your environment. You can install it with pip:
983
`pip install phonemizer`. Please note that you may need to restart your runtime after installation.
984
985
986
"""


987
988
989
# docstyle-ignore
SACREMOSES_IMPORT_ERROR = """
{0} requires the sacremoses library but it was not found in your environment. You can install it with pip:
990
`pip install sacremoses`. Please note that you may need to restart your runtime after installation.
991
992
993
"""


994
995
996
# docstyle-ignore
SCIPY_IMPORT_ERROR = """
{0} requires the scipy library but it was not found in your environment. You can install it with pip:
997
`pip install scipy`. Please note that you may need to restart your runtime after installation.
998
999
1000
1001
1002
1003
"""


# docstyle-ignore
SPEECH_IMPORT_ERROR = """
{0} requires the torchaudio library but it was not found in your environment. You can install it with pip:
1004
`pip install torchaudio`. Please note that you may need to restart your runtime after installation.
1005
1006
1007
1008
1009
"""

# docstyle-ignore
TIMM_IMPORT_ERROR = """
{0} requires the timm library but it was not found in your environment. You can install it with pip:
1010
`pip install timm`. Please note that you may need to restart your runtime after installation.
1011
1012
"""

1013
1014
1015
1016
1017
1018
1019
# docstyle-ignore
NATTEN_IMPORT_ERROR = """
{0} requires the natten library but it was not found in your environment. You can install it by referring to:
shi-labs.com/natten . You can also install it with pip (may take longer to build):
`pip install natten`. Please note that you may need to restart your runtime after installation.
"""

1020
1021
1022
# docstyle-ignore
VISION_IMPORT_ERROR = """
{0} requires the PIL library but it was not found in your environment. You can install it with pip:
1023
`pip install pillow`. Please note that you may need to restart your runtime after installation.
1024
1025
1026
1027
1028
1029
"""


# docstyle-ignore
PYTESSERACT_IMPORT_ERROR = """
{0} requires the PyTesseract library but it was not found in your environment. You can install it with pip:
1030
`pip install pytesseract`. Please note that you may need to restart your runtime after installation.
1031
1032
1033
1034
1035
"""

# docstyle-ignore
PYCTCDECODE_IMPORT_ERROR = """
{0} requires the pyctcdecode library but it was not found in your environment. You can install it with pip:
1036
`pip install pyctcdecode`. Please note that you may need to restart your runtime after installation.
1037
1038
"""

1039
1040
1041
# docstyle-ignore
ACCELERATE_IMPORT_ERROR = """
{0} requires the accelerate library but it was not found in your environment. You can install it with pip:
1042
`pip install accelerate`. Please note that you may need to restart your runtime after installation.
1043
1044
"""

1045
1046
1047
1048
# docstyle-ignore
CCL_IMPORT_ERROR = """
{0} requires the torch ccl library but it was not found in your environment. You can install it with pip:
`pip install oneccl_bind_pt -f https://developer.intel.com/ipex-whl-stable`
1049
Please note that you may need to restart your runtime after installation.
1050
"""
1051

Susnato Dhar's avatar
Susnato Dhar committed
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
# docstyle-ignore
ESSENTIA_IMPORT_ERROR = """
{0} requires essentia library. But that was not found in your environment. You can install them with pip:
`pip install essentia==2.1b6.dev1034`
Please note that you may need to restart your runtime after installation.
"""

# docstyle-ignore
LIBROSA_IMPORT_ERROR = """
{0} requires thes librosa library. But that was not found in your environment. You can install them with pip:
`pip install librosa`
Please note that you may need to restart your runtime after installation.
"""

# docstyle-ignore
PRETTY_MIDI_IMPORT_ERROR = """
{0} requires thes pretty_midi library. But that was not found in your environment. You can install them with pip:
`pip install pretty_midi`
Please note that you may need to restart your runtime after installation.
"""

1073
1074
1075
1076
1077
DECORD_IMPORT_ERROR = """
{0} requires the decord library but it was not found in your environment. You can install it with pip: `pip install
decord`. Please note that you may need to restart your runtime after installation.
"""

Clémentine Fourrier's avatar
Clémentine Fourrier committed
1078
1079
1080
1081
1082
CYTHON_IMPORT_ERROR = """
{0} requires the Cython library but it was not found in your environment. You can install it with pip: `pip install
Cython`. Please note that you may need to restart your runtime after installation.
"""

1083
1084
1085
1086
1087
JIEBA_IMPORT_ERROR = """
{0} requires the jieba library but it was not found in your environment. You can install it with pip: `pip install
jieba`. Please note that you may need to restart your runtime after installation.
"""

1088
1089
1090
1091
1092
PEFT_IMPORT_ERROR = """
{0} requires the peft library but it was not found in your environment. You can install it with pip: `pip install
peft`. Please note that you may need to restart your runtime after installation.
"""

1093
1094
1095
1096
1097
JINJA_IMPORT_ERROR = """
{0} requires the jinja library but it was not found in your environment. You can install it with pip: `pip install
jinja2`. Please note that you may need to restart your runtime after installation.
"""

1098
1099
BACKENDS_MAPPING = OrderedDict(
    [
NielsRogge's avatar
NielsRogge committed
1100
        ("bs4", (is_bs4_available, BS4_IMPORT_ERROR)),
1101
1102
        ("datasets", (is_datasets_available, DATASETS_IMPORT_ERROR)),
        ("detectron2", (is_detectron2_available, DETECTRON2_IMPORT_ERROR)),
Susnato Dhar's avatar
Susnato Dhar committed
1103
        ("essentia", (is_essentia_available, ESSENTIA_IMPORT_ERROR)),
1104
1105
1106
1107
1108
        ("faiss", (is_faiss_available, FAISS_IMPORT_ERROR)),
        ("flax", (is_flax_available, FLAX_IMPORT_ERROR)),
        ("ftfy", (is_ftfy_available, FTFY_IMPORT_ERROR)),
        ("pandas", (is_pandas_available, PANDAS_IMPORT_ERROR)),
        ("phonemizer", (is_phonemizer_available, PHONEMIZER_IMPORT_ERROR)),
Susnato Dhar's avatar
Susnato Dhar committed
1109
1110
        ("pretty_midi", (is_pretty_midi_available, PRETTY_MIDI_IMPORT_ERROR)),
        ("librosa", (is_librosa_available, LIBROSA_IMPORT_ERROR)),
1111
1112
1113
        ("protobuf", (is_protobuf_available, PROTOBUF_IMPORT_ERROR)),
        ("pyctcdecode", (is_pyctcdecode_available, PYCTCDECODE_IMPORT_ERROR)),
        ("pytesseract", (is_pytesseract_available, PYTESSERACT_IMPORT_ERROR)),
1114
        ("sacremoses", (is_sacremoses_available, SACREMOSES_IMPORT_ERROR)),
1115
1116
1117
1118
1119
1120
        ("pytorch_quantization", (is_pytorch_quantization_available, PYTORCH_QUANTIZATION_IMPORT_ERROR)),
        ("sentencepiece", (is_sentencepiece_available, SENTENCEPIECE_IMPORT_ERROR)),
        ("sklearn", (is_sklearn_available, SKLEARN_IMPORT_ERROR)),
        ("speech", (is_speech_available, SPEECH_IMPORT_ERROR)),
        ("tensorflow_probability", (is_tensorflow_probability_available, TENSORFLOW_PROBABILITY_IMPORT_ERROR)),
        ("tf", (is_tf_available, TENSORFLOW_IMPORT_ERROR)),
1121
        ("tensorflow_text", (is_tensorflow_text_available, TENSORFLOW_TEXT_IMPORT_ERROR)),
1122
        ("timm", (is_timm_available, TIMM_IMPORT_ERROR)),
1123
        ("natten", (is_natten_available, NATTEN_IMPORT_ERROR)),
1124
1125
        ("tokenizers", (is_tokenizers_available, TOKENIZERS_IMPORT_ERROR)),
        ("torch", (is_torch_available, PYTORCH_IMPORT_ERROR)),
NielsRogge's avatar
NielsRogge committed
1126
        ("torchvision", (is_torchvision_available, TORCHVISION_IMPORT_ERROR)),
1127
1128
        ("vision", (is_vision_available, VISION_IMPORT_ERROR)),
        ("scipy", (is_scipy_available, SCIPY_IMPORT_ERROR)),
1129
        ("accelerate", (is_accelerate_available, ACCELERATE_IMPORT_ERROR)),
1130
        ("oneccl_bind_pt", (is_ccl_available, CCL_IMPORT_ERROR)),
1131
        ("decord", (is_decord_available, DECORD_IMPORT_ERROR)),
Clémentine Fourrier's avatar
Clémentine Fourrier committed
1132
        ("cython", (is_cython_available, CYTHON_IMPORT_ERROR)),
1133
        ("jieba", (is_jieba_available, JIEBA_IMPORT_ERROR)),
1134
        ("peft", (is_peft_available, PEFT_IMPORT_ERROR)),
1135
        ("jinja", (is_jinja_available, JINJA_IMPORT_ERROR)),
1136
1137
1138
1139
1140
1141
1142
1143
1144
    ]
)


def requires_backends(obj, backends):
    if not isinstance(backends, (list, tuple)):
        backends = [backends]

    name = obj.__name__ if hasattr(obj, "__name__") else obj.__class__.__name__
1145
1146
1147
1148
1149
1150
1151
1152
1153

    # Raise an error for users who might not realize that classes without "TF" are torch-only
    if "torch" in backends and "tf" not in backends and not is_torch_available() and is_tf_available():
        raise ImportError(PYTORCH_IMPORT_ERROR_WITH_TF.format(name))

    # Raise the inverse error for PyTorch users trying to load TF classes
    if "tf" in backends and "torch" not in backends and is_torch_available() and not is_tf_available():
        raise ImportError(TF_IMPORT_ERROR_WITH_PYTORCH.format(name))

1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
    checks = (BACKENDS_MAPPING[backend] for backend in backends)
    failed = [msg.format(name) for available, msg in checks if not available()]
    if failed:
        raise ImportError("".join(failed))


class DummyObject(type):
    """
    Metaclass for the dummy objects. Any class inheriting from it will return the ImportError generated by
    `requires_backend` each time a user tries to access any method of that class.
    """

1166
    def __getattribute__(cls, key):
1167
        if key.startswith("_") and key != "_from_config":
1168
            return super().__getattribute__(key)
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
        requires_backends(cls, cls._backends)


def is_torch_fx_proxy(x):
    if is_torch_fx_available():
        import torch.fx

        return isinstance(x, torch.fx.Proxy)
    return False


class _LazyModule(ModuleType):
    """
    Module class that surfaces all objects but only performs associated imports when the objects are requested.
    """

    # Very heavily inspired by optuna.integration._IntegrationModule
    # https://github.com/optuna/optuna/blob/master/optuna/integration/__init__.py
    def __init__(self, name, module_file, import_structure, module_spec=None, extra_objects=None):
        super().__init__(name)
        self._modules = set(import_structure.keys())
        self._class_to_module = {}
        for key, values in import_structure.items():
            for value in values:
                self._class_to_module[value] = key
        # Needed for autocompletion in an IDE
        self.__all__ = list(import_structure.keys()) + list(chain(*import_structure.values()))
        self.__file__ = module_file
        self.__spec__ = module_spec
        self.__path__ = [os.path.dirname(module_file)]
        self._objects = {} if extra_objects is None else extra_objects
        self._name = name
        self._import_structure = import_structure

    # Needed for autocompletion in an IDE
    def __dir__(self):
        result = super().__dir__()
        # The elements of self.__all__ that are submodules may or may not be in the dir already, depending on whether
        # they have been accessed or not. So we only add the elements of self.__all__ that are not already in the dir.
        for attr in self.__all__:
            if attr not in result:
                result.append(attr)
        return result

    def __getattr__(self, name: str) -> Any:
        if name in self._objects:
            return self._objects[name]
        if name in self._modules:
            value = self._get_module(name)
        elif name in self._class_to_module.keys():
            module = self._get_module(self._class_to_module[name])
            value = getattr(module, name)
        else:
            raise AttributeError(f"module {self.__name__} has no attribute {name}")

        setattr(self, name, value)
        return value

    def _get_module(self, module_name: str):
        try:
            return importlib.import_module("." + module_name, self.__name__)
        except Exception as e:
            raise RuntimeError(
Sylvain Gugger's avatar
Sylvain Gugger committed
1232
1233
                f"Failed to import {self.__name__}.{module_name} because of the following error (look up to see its"
                f" traceback):\n{e}"
1234
1235
1236
1237
            ) from e

    def __reduce__(self):
        return (self.__class__, (self._name, self.__file__, self._import_structure))
1238
1239
1240
1241


class OptionalDependencyNotAvailable(BaseException):
    """Internally used error class for signalling an optional dependency was not found."""
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260


def direct_transformers_import(path: str, file="__init__.py") -> ModuleType:
    """Imports transformers directly

    Args:
        path (`str`): The path to the source file
        file (`str`, optional): The file to join with the path. Defaults to "__init__.py".

    Returns:
        `ModuleType`: The resulting imported module
    """
    name = "transformers"
    location = os.path.join(path, file)
    spec = importlib.util.spec_from_file_location(name, location, submodule_search_locations=[path])
    module = importlib.util.module_from_spec(spec)
    spec.loader.exec_module(module)
    module = sys.modules[name]
    return module