run_language_modeling.py 33.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
"""
LysandreJik's avatar
LysandreJik committed
17
Fine-tuning the library models for language modeling on a text file (GPT, GPT-2, BERT, RoBERTa).
18
19
20
GPT and GPT-2 are fine-tuned using a causal language modeling (CLM) loss while BERT and RoBERTa are fine-tuned
using a masked language modeling (MLM) loss.
"""
21
22
23
24
25
26


import argparse
import glob
import logging
import os
27
import pickle
28
import random
jinoobaek-qz's avatar
jinoobaek-qz committed
29
30
import re
import shutil
31
from typing import Dict, List, Tuple
32
33
34

import numpy as np
import torch
35
from torch.nn.utils.rnn import pad_sequence
Aymeric Augustin's avatar
Aymeric Augustin committed
36
from torch.utils.data import DataLoader, Dataset, RandomSampler, SequentialSampler
37
38
39
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm, trange

40
from transformers import (
41
    MODEL_WITH_LM_HEAD_MAPPING,
42
43
    WEIGHTS_NAME,
    AdamW,
44
45
46
    AutoConfig,
    AutoModelWithLMHead,
    AutoTokenizer,
47
    PreTrainedModel,
48
    PreTrainedTokenizer,
Aymeric Augustin's avatar
Aymeric Augustin committed
49
    get_linear_schedule_with_warmup,
50
)
51

52

Aymeric Augustin's avatar
Aymeric Augustin committed
53
54
try:
    from torch.utils.tensorboard import SummaryWriter
55
except ImportError:
Aymeric Augustin's avatar
Aymeric Augustin committed
56
57
58
    from tensorboardX import SummaryWriter


59
logger = logging.getLogger(__name__)
60
61


62
63
MODEL_CONFIG_CLASSES = list(MODEL_WITH_LM_HEAD_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
64
65


66
class TextDataset(Dataset):
67
    def __init__(self, tokenizer: PreTrainedTokenizer, args, file_path: str, block_size=512):
68
        assert os.path.isfile(file_path)
69

70
        block_size = block_size - tokenizer.num_special_tokens_to_add(pair=False)
71

72
        directory, filename = os.path.split(file_path)
73
        cached_features_file = os.path.join(
74
            directory, args.model_type + "_cached_lm_" + str(block_size) + "_" + filename
75
        )
76

Lysandre's avatar
Lysandre committed
77
        if os.path.exists(cached_features_file) and not args.overwrite_cache:
78
            logger.info("Loading features from cached file %s", cached_features_file)
79
            with open(cached_features_file, "rb") as handle:
80
81
82
83
84
85
86
87
88
                self.examples = pickle.load(handle)
        else:
            logger.info("Creating features from dataset file at %s", directory)

            self.examples = []
            with open(file_path, encoding="utf-8") as f:
                text = f.read()

            tokenized_text = tokenizer.convert_tokens_to_ids(tokenizer.tokenize(text))
89

90
91
            for i in range(0, len(tokenized_text) - block_size + 1, block_size):  # Truncate in block of block_size
                self.examples.append(tokenizer.build_inputs_with_special_tokens(tokenized_text[i : i + block_size]))
92
93
94
95
96
            # Note that we are loosing the last truncated example here for the sake of simplicity (no padding)
            # If your dataset is small, first you should loook for a bigger one :-) and second you
            # can change this behavior by adding (model specific) padding.

            logger.info("Saving features into cached file %s", cached_features_file)
97
            with open(cached_features_file, "wb") as handle:
98
99
100
101
102
103
                pickle.dump(self.examples, handle, protocol=pickle.HIGHEST_PROTOCOL)

    def __len__(self):
        return len(self.examples)

    def __getitem__(self, item):
104
        return torch.tensor(self.examples[item], dtype=torch.long)
105
106


107
108
109
110
111
112
113
114
115
class LineByLineTextDataset(Dataset):
    def __init__(self, tokenizer: PreTrainedTokenizer, args, file_path: str, block_size=512):
        assert os.path.isfile(file_path)
        # Here, we do not cache the features, operating under the assumption
        # that we will soon use fast multithreaded tokenizers from the
        # `tokenizers` repo everywhere =)
        logger.info("Creating features from dataset file at %s", file_path)

        with open(file_path, encoding="utf-8") as f:
116
            lines = [line for line in f.read().splitlines() if (len(line) > 0 and not line.isspace())]
117

118
        self.examples = tokenizer.batch_encode_plus(lines, add_special_tokens=True, max_length=block_size)["input_ids"]
119
120
121
122
123

    def __len__(self):
        return len(self.examples)

    def __getitem__(self, i):
124
        return torch.tensor(self.examples[i], dtype=torch.long)
125
126


127
def load_and_cache_examples(args, tokenizer, evaluate=False):
128
129
130
131
132
    file_path = args.eval_data_file if evaluate else args.train_data_file
    if args.line_by_line:
        return LineByLineTextDataset(tokenizer, args, file_path=file_path, block_size=args.block_size)
    else:
        return TextDataset(tokenizer, args, file_path=file_path, block_size=args.block_size)
133
134


135
136
137
138
139
140
141
def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

142

143
144
def _sorted_checkpoints(args, checkpoint_prefix="checkpoint", use_mtime=False) -> List[str]:
    ordering_and_checkpoint_path = []
145

146
    glob_checkpoints = glob.glob(os.path.join(args.output_dir, "{}-*".format(checkpoint_prefix)))
jinoobaek-qz's avatar
jinoobaek-qz committed
147
148

    for path in glob_checkpoints:
149
150
151
        if use_mtime:
            ordering_and_checkpoint_path.append((os.path.getmtime(path), path))
        else:
152
            regex_match = re.match(".*{}-([0-9]+)".format(checkpoint_prefix), path)
153
154
155
156
            if regex_match and regex_match.groups():
                ordering_and_checkpoint_path.append((int(regex_match.groups()[0]), path))

    checkpoints_sorted = sorted(ordering_and_checkpoint_path)
jinoobaek-qz's avatar
jinoobaek-qz committed
157
    checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted]
158
159
160
161
162
163
164
165
166
167
168
169
170
171
    return checkpoints_sorted


def _rotate_checkpoints(args, checkpoint_prefix="checkpoint", use_mtime=False) -> None:
    if not args.save_total_limit:
        return
    if args.save_total_limit <= 0:
        return

    # Check if we should delete older checkpoint(s)
    checkpoints_sorted = _sorted_checkpoints(args, checkpoint_prefix, use_mtime)
    if len(checkpoints_sorted) <= args.save_total_limit:
        return

jinoobaek-qz's avatar
jinoobaek-qz committed
172
173
174
175
176
    number_of_checkpoints_to_delete = max(0, len(checkpoints_sorted) - args.save_total_limit)
    checkpoints_to_be_deleted = checkpoints_sorted[:number_of_checkpoints_to_delete]
    for checkpoint in checkpoints_to_be_deleted:
        logger.info("Deleting older checkpoint [{}] due to args.save_total_limit".format(checkpoint))
        shutil.rmtree(checkpoint)
jinoobaek-qz's avatar
jinoobaek-qz committed
177
178


179
def mask_tokens(inputs: torch.Tensor, tokenizer: PreTrainedTokenizer, args) -> Tuple[torch.Tensor, torch.Tensor]:
180
    """ Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original. """
181
182
183
184
185
186

    if tokenizer.mask_token is None:
        raise ValueError(
            "This tokenizer does not have a mask token which is necessary for masked language modeling. Remove the --mlm flag if you want to use this tokenizer."
        )

187
    labels = inputs.clone()
188
    # We sample a few tokens in each sequence for masked-LM training (with probability args.mlm_probability defaults to 0.15 in Bert/RoBERTa)
189
    probability_matrix = torch.full(labels.shape, args.mlm_probability)
190
191
192
    special_tokens_mask = [
        tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist()
    ]
193
    probability_matrix.masked_fill_(torch.tensor(special_tokens_mask, dtype=torch.bool), value=0.0)
194
195
196
    if tokenizer._pad_token is not None:
        padding_mask = labels.eq(tokenizer.pad_token_id)
        probability_matrix.masked_fill_(padding_mask, value=0.0)
197
    masked_indices = torch.bernoulli(probability_matrix).bool()
Lysandre's avatar
Lysandre committed
198
    labels[~masked_indices] = -100  # We only compute loss on masked tokens
199
200

    # 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
thomwolf's avatar
thomwolf committed
201
    indices_replaced = torch.bernoulli(torch.full(labels.shape, 0.8)).bool() & masked_indices
202
203
204
    inputs[indices_replaced] = tokenizer.convert_tokens_to_ids(tokenizer.mask_token)

    # 10% of the time, we replace masked input tokens with random word
thomwolf's avatar
thomwolf committed
205
    indices_random = torch.bernoulli(torch.full(labels.shape, 0.5)).bool() & masked_indices & ~indices_replaced
206
207
    random_words = torch.randint(len(tokenizer), labels.shape, dtype=torch.long)
    inputs[indices_random] = random_words[indices_random]
208

209
    # The rest of the time (10% of the time) we keep the masked input tokens unchanged
210
    return inputs, labels
211

212

213
def train(args, train_dataset, model: PreTrainedModel, tokenizer: PreTrainedTokenizer) -> Tuple[int, float]:
214
215
216
217
218
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
219
220

    def collate(examples: List[torch.Tensor]):
221
222
        if tokenizer._pad_token is None:
            return pad_sequence(examples, batch_first=True)
223
224
        return pad_sequence(examples, batch_first=True, padding_value=tokenizer.pad_token_id)

thomwolf's avatar
thomwolf committed
225
    train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
226
227
228
    train_dataloader = DataLoader(
        train_dataset, sampler=train_sampler, batch_size=args.train_batch_size, collate_fn=collate
    )
229
230
231
232
233
234
235

    if args.max_steps > 0:
        t_total = args.max_steps
        args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
        t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs

236
237
238
    model = model.module if hasattr(model, "module") else model  # Take care of distributed/parallel training
    model.resize_token_embeddings(len(tokenizer))

239
    # Prepare optimizer and schedule (linear warmup and decay)
240
    no_decay = ["bias", "LayerNorm.weight"]
241
    optimizer_grouped_parameters = [
242
243
244
245
246
247
        {
            "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
            "weight_decay": args.weight_decay,
        },
        {"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
    ]
248
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
249
250
251
    scheduler = get_linear_schedule_with_warmup(
        optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
    )
252
253

    # Check if saved optimizer or scheduler states exist
Julien Chaumond's avatar
Julien Chaumond committed
254
255
256
257
    if (
        args.model_name_or_path
        and os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt"))
        and os.path.isfile(os.path.join(args.model_name_or_path, "scheduler.pt"))
258
    ):
259
        # Load in optimizer and scheduler states
260
261
        optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt")))
        scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt")))
262

263
264
265
266
267
268
269
270
271
272
273
274
275
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)

    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
276
277
278
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True
        )
279
280
281
282
283
284

    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
    logger.info("  Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
285
286
287
288
289
290
    logger.info(
        "  Total train batch size (w. parallel, distributed & accumulation) = %d",
        args.train_batch_size
        * args.gradient_accumulation_steps
        * (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
    )
291
292
293
294
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
    logger.info("  Total optimization steps = %d", t_total)

    global_step = 0
295
296
297
    epochs_trained = 0
    steps_trained_in_current_epoch = 0
    # Check if continuing training from a checkpoint
298
    if args.model_name_or_path and os.path.exists(args.model_name_or_path):
299
300
301
302
303
304
305
306
307
308
309
310
311
        try:
            # set global_step to gobal_step of last saved checkpoint from model path
            checkpoint_suffix = args.model_name_or_path.split("-")[-1].split("/")[0]
            global_step = int(checkpoint_suffix)
            epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps)
            steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps)

            logger.info("  Continuing training from checkpoint, will skip to saved global_step")
            logger.info("  Continuing training from epoch %d", epochs_trained)
            logger.info("  Continuing training from global step %d", global_step)
            logger.info("  Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch)
        except ValueError:
            logger.info("  Starting fine-tuning.")
312

313
    tr_loss, logging_loss = 0.0, 0.0
thomwolf's avatar
thomwolf committed
314

315
    model.zero_grad()
316
317
318
    train_iterator = trange(
        epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]
    )
319
    set_seed(args)  # Added here for reproducibility
320
    for epoch in train_iterator:
321
        epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
322
323
324
325

        if args.local_rank != -1:
            train_sampler.set_epoch(epoch)

326
        for step, batch in enumerate(epoch_iterator):
327

328
329
330
331
332
            # Skip past any already trained steps if resuming training
            if steps_trained_in_current_epoch > 0:
                steps_trained_in_current_epoch -= 1
                continue

333
            inputs, labels = mask_tokens(batch, tokenizer, args) if args.mlm else (batch, batch)
334
335
336
            inputs = inputs.to(args.device)
            labels = labels.to(args.device)
            model.train()
337
            outputs = model(inputs, masked_lm_labels=labels) if args.mlm else model(inputs, labels=labels)
338
            loss = outputs[0]  # model outputs are always tuple in transformers (see doc)
339
340

            if args.n_gpu > 1:
341
                loss = loss.mean()  # mean() to average on multi-gpu parallel training
342
343
344
345
346
347
348
349
350
351
352
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps

            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()

            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
353
354
355
356
                if args.fp16:
                    torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
                else:
                    torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
357
                optimizer.step()
358
                scheduler.step()  # Update learning rate schedule
359
360
361
362
363
                model.zero_grad()
                global_step += 1

                if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
                    # Log metrics
364
365
366
                    if (
                        args.local_rank == -1 and args.evaluate_during_training
                    ):  # Only evaluate when single GPU otherwise metrics may not average well
367
368
                        results = evaluate(args, model, tokenizer)
                        for key, value in results.items():
369
370
371
                            tb_writer.add_scalar("eval_{}".format(key), value, global_step)
                    tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step)
                    tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step)
372
373
374
                    logging_loss = tr_loss

                if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
375
                    checkpoint_prefix = "checkpoint"
376
                    # Save model checkpoint
377
                    output_dir = os.path.join(args.output_dir, "{}-{}".format(checkpoint_prefix, global_step))
378
                    os.makedirs(output_dir, exist_ok=True)
379
380
381
                    model_to_save = (
                        model.module if hasattr(model, "module") else model
                    )  # Take care of distributed/parallel training
382
                    model_to_save.save_pretrained(output_dir)
383
384
                    tokenizer.save_pretrained(output_dir)

385
                    torch.save(args, os.path.join(output_dir, "training_args.bin"))
386
387
                    logger.info("Saving model checkpoint to %s", output_dir)

388
                    _rotate_checkpoints(args, checkpoint_prefix)
jinoobaek-qz's avatar
jinoobaek-qz committed
389

390
391
                    torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
                    torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
Bilal Khan's avatar
Bilal Khan committed
392
                    logger.info("Saving optimizer and scheduler states to %s", output_dir)
393

394
395
396
397
398
399
400
401
402
403
404
405
406
            if args.max_steps > 0 and global_step > args.max_steps:
                epoch_iterator.close()
                break
        if args.max_steps > 0 and global_step > args.max_steps:
            train_iterator.close()
            break

    if args.local_rank in [-1, 0]:
        tb_writer.close()

    return global_step, tr_loss / global_step


407
def evaluate(args, model: PreTrainedModel, tokenizer: PreTrainedTokenizer, prefix="") -> Dict:
408
409
410
411
412
    # Loop to handle MNLI double evaluation (matched, mis-matched)
    eval_output_dir = args.output_dir

    eval_dataset = load_and_cache_examples(args, tokenizer, evaluate=True)

413
414
    if args.local_rank in [-1, 0]:
        os.makedirs(eval_output_dir, exist_ok=True)
415
416
417

    args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
    # Note that DistributedSampler samples randomly
418
419

    def collate(examples: List[torch.Tensor]):
420
421
        if tokenizer._pad_token is None:
            return pad_sequence(examples, batch_first=True)
422
423
        return pad_sequence(examples, batch_first=True, padding_value=tokenizer.pad_token_id)

424
    eval_sampler = SequentialSampler(eval_dataset)
425
426
427
    eval_dataloader = DataLoader(
        eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size, collate_fn=collate
    )
428

ronakice's avatar
ronakice committed
429
430
431
432
    # multi-gpu evaluate
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

433
434
435
436
437
438
    # Eval!
    logger.info("***** Running evaluation {} *****".format(prefix))
    logger.info("  Num examples = %d", len(eval_dataset))
    logger.info("  Batch size = %d", args.eval_batch_size)
    eval_loss = 0.0
    nb_eval_steps = 0
439
440
    model.eval()

441
    for batch in tqdm(eval_dataloader, desc="Evaluating"):
altsoph's avatar
altsoph committed
442
443
444
        inputs, labels = mask_tokens(batch, tokenizer, args) if args.mlm else (batch, batch)
        inputs = inputs.to(args.device)
        labels = labels.to(args.device)
445
446

        with torch.no_grad():
altsoph's avatar
altsoph committed
447
            outputs = model(inputs, masked_lm_labels=labels) if args.mlm else model(inputs, labels=labels)
448
449
450
451
452
453
454
            lm_loss = outputs[0]
            eval_loss += lm_loss.mean().item()
        nb_eval_steps += 1

    eval_loss = eval_loss / nb_eval_steps
    perplexity = torch.exp(torch.tensor(eval_loss))

455
    result = {"perplexity": perplexity}
456

457
    output_eval_file = os.path.join(eval_output_dir, prefix, "eval_results.txt")
458
459
460
461
462
463
    with open(output_eval_file, "w") as writer:
        logger.info("***** Eval results {} *****".format(prefix))
        for key in sorted(result.keys()):
            logger.info("  %s = %s", key, str(result[key]))
            writer.write("%s = %s\n" % (key, str(result[key])))

464
    return result
465
466
467
468
469


def main():
    parser = argparse.ArgumentParser()

470
    # Required parameters
471
472
473
474
475
476
477
478
479
    parser.add_argument(
        "--train_data_file", default=None, type=str, required=True, help="The input training data file (a text file)."
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        required=True,
        help="The output directory where the model predictions and checkpoints will be written.",
    )
480
481
482
    parser.add_argument(
        "--model_type", type=str, required=True, help="The model architecture to be trained or fine-tuned.",
    )
483

484
    # Other parameters
485
486
487
488
489
490
    parser.add_argument(
        "--eval_data_file",
        default=None,
        type=str,
        help="An optional input evaluation data file to evaluate the perplexity on (a text file).",
    )
491
492
493
494
495
    parser.add_argument(
        "--line_by_line",
        action="store_true",
        help="Whether distinct lines of text in the dataset are to be handled as distinct sequences.",
    )
Julien Chaumond's avatar
Julien Chaumond committed
496
497
498
    parser.add_argument(
        "--should_continue", action="store_true", help="Whether to continue from latest checkpoint in output_dir"
    )
499
500
    parser.add_argument(
        "--model_name_or_path",
501
        default=None,
502
        type=str,
503
        help="The model checkpoint for weights initialization. Leave None if you want to train a model from scratch.",
504
505
506
507
508
509
510
511
512
513
514
    )

    parser.add_argument(
        "--mlm", action="store_true", help="Train with masked-language modeling loss instead of language modeling."
    )
    parser.add_argument(
        "--mlm_probability", type=float, default=0.15, help="Ratio of tokens to mask for masked language modeling loss"
    )

    parser.add_argument(
        "--config_name",
515
        default=None,
516
        type=str,
517
        help="Optional pretrained config name or path if not the same as model_name_or_path. If both are None, initialize a new config.",
518
519
520
    )
    parser.add_argument(
        "--tokenizer_name",
521
522
523
524
        default=None,
        type=str,
        help="Optional pretrained tokenizer name or path if not the same as model_name_or_path. If both are None, initialize a new tokenizer.",
    )
525
526
    parser.add_argument(
        "--cache_dir",
527
        default=None,
528
        type=str,
Oren Amsalem's avatar
Oren Amsalem committed
529
        help="Optional directory to store the pre-trained models downloaded from s3 (instead of the default one)",
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
    )
    parser.add_argument(
        "--block_size",
        default=-1,
        type=int,
        help="Optional input sequence length after tokenization."
        "The training dataset will be truncated in block of this size for training."
        "Default to the model max input length for single sentence inputs (take into account special tokens).",
    )
    parser.add_argument("--do_train", action="store_true", help="Whether to run training.")
    parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.")
    parser.add_argument(
        "--evaluate_during_training", action="store_true", help="Run evaluation during training at each logging step."
    )

    parser.add_argument("--per_gpu_train_batch_size", default=4, type=int, help="Batch size per GPU/CPU for training.")
    parser.add_argument(
        "--per_gpu_eval_batch_size", default=4, type=int, help="Batch size per GPU/CPU for evaluation."
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
    parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
    parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument(
        "--num_train_epochs", default=1.0, type=float, help="Total number of training epochs to perform."
    )
    parser.add_argument(
        "--max_steps",
        default=-1,
        type=int,
        help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
    )
    parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")

570
571
    parser.add_argument("--logging_steps", type=int, default=500, help="Log every X updates steps.")
    parser.add_argument("--save_steps", type=int, default=500, help="Save checkpoint every X updates steps.")
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
    parser.add_argument(
        "--save_total_limit",
        type=int,
        default=None,
        help="Limit the total amount of checkpoints, delete the older checkpoints in the output_dir, does not delete by default",
    )
    parser.add_argument(
        "--eval_all_checkpoints",
        action="store_true",
        help="Evaluate all checkpoints starting with the same prefix as model_name_or_path ending and ending with step number",
    )
    parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available")
    parser.add_argument(
        "--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory"
    )
    parser.add_argument(
        "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets"
    )
    parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")

    parser.add_argument(
        "--fp16",
        action="store_true",
        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
    )
    parser.add_argument(
        "--fp16_opt_level",
        type=str,
        default="O1",
        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
        "See details at https://nvidia.github.io/apex/amp.html",
    )
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
    parser.add_argument("--server_ip", type=str, default="", help="For distant debugging.")
    parser.add_argument("--server_port", type=str, default="", help="For distant debugging.")
607
608
    args = parser.parse_args()

maxvidal's avatar
maxvidal committed
609
    if args.model_type in ["bert", "roberta", "distilbert", "camembert"] and not args.mlm:
610
        raise ValueError(
611
            "BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the --mlm "
612
613
            "flag (masked language modeling)."
        )
614
    if args.eval_data_file is None and args.do_eval:
615
616
617
618
        raise ValueError(
            "Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file "
            "or remove the --do_eval argument."
        )
619
620
621
    if args.should_continue:
        sorted_checkpoints = _sorted_checkpoints(args)
        if len(sorted_checkpoints) == 0:
Julien Chaumond's avatar
Julien Chaumond committed
622
            raise ValueError("Used --should_continue but no checkpoint was found in --output_dir.")
623
624
        else:
            args.model_name_or_path = sorted_checkpoints[-1]
625
626
627
628
629
630

    if (
        os.path.exists(args.output_dir)
        and os.listdir(args.output_dir)
        and args.do_train
        and not args.overwrite_output_dir
631
        and not args.should_continue
632
633
634
635
636
637
    ):
        raise ValueError(
            "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
                args.output_dir
            )
        )
638
639
640
641
642

    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
643

644
645
646
647
648
649
650
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
651
        args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count()
652
653
654
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
655
        torch.distributed.init_process_group(backend="nccl")
656
657
658
659
        args.n_gpu = 1
    args.device = device

    # Setup logging
660
661
662
663
664
665
666
667
668
669
670
671
672
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,
    )
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        args.local_rank,
        device,
        args.n_gpu,
        bool(args.local_rank != -1),
        args.fp16,
    )
673
674
675
676
677
678

    # Set seed
    set_seed(args)

    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
679
680
        torch.distributed.barrier()  # Barrier to make sure only the first process in distributed training download model & vocab

681
    if args.config_name:
682
        config = AutoConfig.from_pretrained(args.config_name, cache_dir=args.cache_dir)
683
    elif args.model_name_or_path:
684
        config = AutoConfig.from_pretrained(args.model_name_or_path, cache_dir=args.cache_dir)
685
    else:
686
687
688
689
690
691
        # When we release a pip version exposing CONFIG_MAPPING,
        # we can do `config = CONFIG_MAPPING[args.model_type]()`.
        raise ValueError(
            "You are instantiating a new config instance from scratch. This is not supported, but you can do it from another script, save it,"
            "and load it from here, using --config_name"
        )
692
693

    if args.tokenizer_name:
694
        tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, cache_dir=args.cache_dir)
695
    elif args.model_name_or_path:
696
        tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, cache_dir=args.cache_dir)
697
    else:
698
        raise ValueError(
699
700
            "You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another script, save it,"
            "and load it from here, using --tokenizer_name"
701
702
        )

703
    if args.block_size <= 0:
704
        args.block_size = tokenizer.max_len
705
706
        # Our input block size will be the max possible for the model
    else:
707
        args.block_size = min(args.block_size, tokenizer.max_len)
708
709

    if args.model_name_or_path:
710
        model = AutoModelWithLMHead.from_pretrained(
711
712
713
714
715
716
717
            args.model_name_or_path,
            from_tf=bool(".ckpt" in args.model_name_or_path),
            config=config,
            cache_dir=args.cache_dir,
        )
    else:
        logger.info("Training new model from scratch")
718
        model = AutoModelWithLMHead.from_config(config)
719

720
    model.to(args.device)
721
722

    if args.local_rank == 0:
723
        torch.distributed.barrier()  # End of barrier to make sure only the first process in distributed training download model & vocab
724
725
726
727
728

    logger.info("Training/evaluation parameters %s", args)

    # Training
    if args.do_train:
729
730
731
        if args.local_rank not in [-1, 0]:
            torch.distributed.barrier()  # Barrier to make sure only the first process in distributed training process the dataset, and the others will use the cache

732
        train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False)
733
734
735
736

        if args.local_rank == 0:
            torch.distributed.barrier()

737
738
739
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)

740
    # Saving best-practices: if you use save_pretrained for the model and tokenizer, you can reload them using from_pretrained()
741
742
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
        # Create output directory if needed
743
744
        if args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir, exist_ok=True)
745
746
747
748

        logger.info("Saving model checkpoint to %s", args.output_dir)
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
749
750
751
        model_to_save = (
            model.module if hasattr(model, "module") else model
        )  # Take care of distributed/parallel training
752
753
754
755
        model_to_save.save_pretrained(args.output_dir)
        tokenizer.save_pretrained(args.output_dir)

        # Good practice: save your training arguments together with the trained model
756
        torch.save(args, os.path.join(args.output_dir, "training_args.bin"))
757
758

        # Load a trained model and vocabulary that you have fine-tuned
759
760
        model = AutoModelWithLMHead.from_pretrained(args.output_dir)
        tokenizer = AutoTokenizer.from_pretrained(args.output_dir)
761
762
763
764
765
766
767
        model.to(args.device)

    # Evaluation
    results = {}
    if args.do_eval and args.local_rank in [-1, 0]:
        checkpoints = [args.output_dir]
        if args.eval_all_checkpoints:
768
769
770
            checkpoints = list(
                os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True))
            )
771
            logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN)  # Reduce logging
772
773
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
        for checkpoint in checkpoints:
774
775
776
            global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else ""
            prefix = checkpoint.split("/")[-1] if checkpoint.find("checkpoint") != -1 else ""

777
            model = AutoModelWithLMHead.from_pretrained(checkpoint)
778
            model.to(args.device)
779
            result = evaluate(args, model, tokenizer, prefix=prefix)
780
            result = dict((k + "_{}".format(global_step), v) for k, v in result.items())
781
782
783
784
785
786
            results.update(result)

    return results


if __name__ == "__main__":
altsoph's avatar
altsoph committed
787
    main()