- 18 Apr, 2020 5 commits
-
-
Thomas Wolf authored
* First pass on utility classes and python tokenizers * finishing cleanup pass * style and quality * Fix tests * Updating following @mfuntowicz comment * style and quality * Fix Roberta * fix batch_size/seq_length inBatchEncoding * add alignement methods + tests * Fix OpenAI and Transfo-XL tokenizers * adding trim_offsets=True default for GPT2 et RoBERTa * style and quality * fix tests * add_prefix_space in roberta * bump up tokenizers to rc7 * style * unfortunately tensorfow does like these - removing shape/seq_len for now * Update src/transformers/tokenization_utils.py Co-Authored-By:
Stefan Schweter <stefan@schweter.it> * Adding doc and docstrings * making flake8 happy Co-authored-by:
Stefan Schweter <stefan@schweter.it>
-
-
Julien Chaumond authored
-
Benjamin Muller authored
-
Patrick von Platen authored
* better config serialization * finish configuration utils
-
- 17 Apr, 2020 8 commits
-
-
Lysandre Debut authored
* XLM tokenizer should encode with bos token * Update tests
-
Patrick von Platen authored
-
Patrick von Platen authored
-
Harutaka Kawamura authored
-
Santiago Castro authored
* Add support for the null answer in `QuestionAnsweringPipeline` * black * Fix min null score computation * Fix a PR comment
-
Simon Böhm authored
token_type_id is converted into the segment embedding. For question answering, this needs to highlight whether a token belongs to sequence 0 or 1. encode_plus takes care of correctly setting this parameter automatically.
-
Pierric Cistac authored
* Add TFAlbertForQuestionAnswering * Add TFRobertaForQuestionAnswering * Update TFAutoModel with Roberta/Albert for QA * Clean `super` TF Albert calls
-
Patrick von Platen authored
-
- 16 Apr, 2020 12 commits
-
-
Sam Shleifer authored
renames `run_bart_sum.py` to `finetune.py`
-
Jonathan Sum authored
Changing from "fine-grained token-leven" to "fine-grained token-level"
-
Aryansh Omray authored
-
Sam Shleifer authored
-
Patrick von Platen authored
* Refactored use of newstest2013 to newstest2014. Fixed bug where argparse consumed first command line argument as model_size argument rather than using default model_size by forcing explicit --model_size flag inclusion * More pythonic file handling through 'with' context * COSMETIC - ran Black and isort * Fixed reference to number of lines in newstest2014 * Fixed failing test. More pythonic file handling * finish PR from tholiao * remove outcommented lines * make style * make isort happy Co-authored-by:Thomas Liao <tholiao@gmail.com>
-
Lysandre Debut authored
-
Davide Fiocco authored
-
Patrick von Platen authored
-
Patrick von Platen authored
* correct gpt2 test inputs * make style * delete modeling_gpt2 change in test file * translate from pytorch * correct tests * fix conflicts * fix conflicts * fix conflicts * fix conflicts * make tensorflow t5 caching work * make style * clean reorder cache * remove unnecessary spaces * fix test
-
Patrick von Platen authored
-
Sam Shleifer authored
* Delete some copy pasted code
-
Patrick von Platen authored
* add dialoGPT * update README.md * fix conflict * update readme * add code links to docs * Update README.md * Update dialo_gpt2.rst * Update pretrained_models.rst * Update docs/source/model_doc/dialo_gpt2.rst Co-Authored-By:
Julien Chaumond <chaumond@gmail.com> * change filename of dialogpt Co-authored-by:
Julien Chaumond <chaumond@gmail.com>
-
- 15 Apr, 2020 2 commits
-
-
Sam Shleifer authored
- adds pytorch-lightning dependency
-
Patrick von Platen authored
-
- 14 Apr, 2020 2 commits
-
-
Patrick von Platen authored
* remove output_past from pt * make style * add optional input length for gpt2 * add use cache to prepare input * save memory in gpt2 * correct gpt2 test inputs * make past input optional for gpt2 * finish use_cache for all models * make style * delete modeling_gpt2 change in test file * correct docstring * correct is true statements for gpt2
-
Patrick von Platen authored
-
- 13 Apr, 2020 2 commits
-
-
Teven authored
* Shifting labels inside TransfoXLLMHead * Changed doc to reflect change * Updated pytorch test * removed IDE whitespace changes * black reformat Co-authored-by:TevenLeScao <teven.lescao@gmail.com>
-
elk-cloner authored
-
- 11 Apr, 2020 2 commits
-
-
HenrykBorzymowski authored
* added model_cards for polish squad models * corrected mistake in polish design cards * updated model_cards for squad2_dutch model * added links to benchmark models Co-authored-by:Henryk Borzymowski <henryk.borzymowski@pwc.com>
-
HUSEIN ZOLKEPLI authored
* add bert bahasa readme * update readme * update readme * added xlnet * added tiny-bert and fix xlnet readme * added albert base * added albert tiny
-
- 10 Apr, 2020 7 commits
-
-
Jin Young Sohn authored
-
Anthony MOI authored
-
Jin Young Sohn authored
* Initial commit to get BERT + run_glue.py on TPU * Add README section for TPU and address comments. * Cleanup TPU bits from run_glue.py (#3) TPU runner is currently implemented in: https://github.com/pytorch-tpu/transformers/blob/tpu/examples/run_glue_tpu.py. We plan to upstream this directly into `huggingface/transformers` (either `master` or `tpu`) branch once it's been more thoroughly tested. * Cleanup TPU bits from run_glue.py TPU runner is currently implemented in: https://github.com/pytorch-tpu/transformers/blob/tpu/examples/run_glue_tpu.py . We plan to upstream this directly into `huggingface/transformers` (either `master` or `tpu`) branch once it's been more thoroughly tested. * No need to call `xm.mark_step()` explicitly (#4) Since for gradient accumulation we're accumulating on batches from `ParallelLoader` instance which on next() marks the step itself. * Resolve R/W conflicts from multiprocessing (#5) * Add XLNet in list of models for `run_glue_tpu.py` (#6) * Add RoBERTa to list of models in TPU GLUE (#7) * Add RoBERTa and DistilBert to list of models in TPU GLUE (#8) * Use barriers to reduce duplicate work/resources (#9) * Shard eval dataset and aggregate eval metrics (#10) * Shard eval dataset and aggregate eval metrics Also, instead of calling `eval_loss.item()` every time do summation with tensors on device. * Change defaultdict to float * Reduce the pred, label tensors instead of metrics As brought up during review some metrics like f1 cannot be aggregated via averaging. GLUE task metrics depends largely on the dataset, so instead we sync the prediction and label tensors so that the metrics can be computed accurately on those instead. * Only use tb_writer from master (#11) * Apply huggingface black code formatting * Style * Remove `--do_lower_case` as example uses cased * Add option to specify tensorboard logdir This is needed for our testing framework which checks regressions against key metrics writtern by the summary writer. * Using configuration for `xla_device` * Prefix TPU specific comments. * num_cores clarification and namespace eval metrics * Cache features file under `args.cache_dir` Instead of under `args.data_dir`. This is needed as our test infra uses data_dir with a read-only filesystem. * Rename `run_glue_tpu` to `run_tpu_glue` Co-authored-by:
LysandreJik <lysandre.debut@reseau.eseo.fr>
-
Julien Chaumond authored
-
Julien Chaumond authored
* [examples] Generate argparsers from type hints on dataclasses * [HfArgumentParser] way simpler API * Restore run_language_modeling.py for easier diff * [HfArgumentParser] final tweaks from code review
-
Sam Shleifer authored
- support mbart-en-ro weights - add MBartTokenizer
-
Julien Chaumond authored
* Big cleanup of `glue_convert_examples_to_features` * Use batch_encode_plus * Cleaner wrapping of glue_convert_examples_to_features for TF @lysandrejik * Cleanup syntax, thanks to @mfuntowicz * Raise explicit error in case of user error
-