test_modeling_tf_gpt2.py 23.5 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16
17
import unittest

Aymeric Augustin's avatar
Aymeric Augustin committed
18
from transformers import GPT2Config, is_tf_available
19
from transformers.testing_utils import require_tf, slow
thomwolf's avatar
thomwolf committed
20

21
22
23
from ..test_configuration_common import ConfigTester
from ..test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ..utils.test_modeling_tf_core import TFCoreModelTesterMixin
thomwolf's avatar
thomwolf committed
24
25


26
if is_tf_available():
thomwolf's avatar
thomwolf committed
27
    import tensorflow as tf
28

29
    from transformers import GPT2Tokenizer
Sylvain Gugger's avatar
Sylvain Gugger committed
30
    from transformers.models.gpt2.modeling_tf_gpt2 import (
31
        TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST,
32
        TFGPT2DoubleHeadsModel,
33
        TFGPT2ForSequenceClassification,
34
35
        TFGPT2LMHeadModel,
        TFGPT2Model,
36
    )
37
    from transformers.tf_utils import shape_list
thomwolf's avatar
thomwolf committed
38
39


40
41
class TFGPT2ModelTester:
    def __init__(
Lysandre's avatar
Lysandre committed
42
43
        self,
        parent,
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
    ):
        self.parent = parent
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_token_type_ids = True
        self.use_input_mask = True
        self.use_labels = True
        self.use_mc_token_ids = True
        self.vocab_size = 99
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.intermediate_size = 37
        self.hidden_act = "gelu"
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 16
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.scope = None
        self.bos_token_id = self.vocab_size - 1
        self.eos_token_id = self.vocab_size - 1
70
        self.pad_token_id = self.vocab_size - 1
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
            input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        mc_token_ids = None
        if self.use_mc_token_ids:
            mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = GPT2Config(
            vocab_size=self.vocab_size,
            n_embd=self.hidden_size,
            n_layer=self.num_hidden_layers,
            n_head=self.num_attention_heads,
            # intermediate_size=self.intermediate_size,
            # hidden_act=self.hidden_act,
            # hidden_dropout_prob=self.hidden_dropout_prob,
            # attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            n_positions=self.max_position_embeddings,
            # type_vocab_size=self.type_vocab_size,
            # initializer_range=self.initializer_range
            bos_token_id=self.bos_token_id,
            eos_token_id=self.eos_token_id,
109
110
            pad_token_id=self.pad_token_id,
            return_dict=True,
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
        )

        head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)

        return (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        )

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
    def prepare_config_and_inputs_for_decoder(self):
        (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = self.prepare_config_and_inputs()

        encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
        encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

        return (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            sequence_labels,
            token_labels,
            choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        )

156
157
158
159
160
161
162
    def create_and_check_gpt2_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = TFGPT2Model(config=config)
        inputs = {
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "token_type_ids": token_type_ids,
        }
Sylvain Gugger's avatar
Sylvain Gugger committed
163
        result = model(inputs)
164
165

        inputs = [input_ids, None, input_mask]  # None is the input for 'past'
Sylvain Gugger's avatar
Sylvain Gugger committed
166
        result = model(inputs)
167

Sylvain Gugger's avatar
Sylvain Gugger committed
168
        result = model(input_ids)
169

170
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
171
172
173
174
175

    def create_and_check_gpt2_model_past(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = TFGPT2Model(config=config)

        # first forward pass
176
177
178
179
180
181
182
        outputs = model(input_ids, token_type_ids=token_type_ids, use_cache=True)
        outputs_use_cache_conf = model(input_ids, token_type_ids=token_type_ids)
        outputs_no_past = model(input_ids, token_type_ids=token_type_ids, use_cache=False)

        self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf))
        self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1)

Sylvain Gugger's avatar
Sylvain Gugger committed
183
        output, past = outputs.to_tuple()
184
185
186
187
188
189
190
191
192

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
        next_token_types = ids_tensor([self.batch_size, 1], self.type_vocab_size)

        # append to next input_ids and token_type_ids
        next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
        next_token_type_ids = tf.concat([token_type_ids, next_token_types], axis=-1)

Sylvain Gugger's avatar
Sylvain Gugger committed
193
194
        output_from_no_past = model(next_input_ids, token_type_ids=next_token_type_ids)["last_hidden_state"]
        output_from_past = model(next_tokens, token_type_ids=next_token_types, past=past)["last_hidden_state"]
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

        # select random slice
        random_slice_idx = int(ids_tensor((1,), shape_list(output_from_past)[-1]))
        output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx]
        output_from_past_slice = output_from_past[:, 0, random_slice_idx]

        # test that outputs are equal for slice
        tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-6)

    def create_and_check_gpt2_model_attention_mask_past(
        self, config, input_ids, input_mask, head_mask, token_type_ids, *args
    ):
        model = TFGPT2Model(config=config)

        # create attention mask
        half_seq_length = self.seq_length // 2
        attn_mask_begin = tf.ones((self.batch_size, half_seq_length), dtype=tf.int32)
        attn_mask_end = tf.zeros((self.batch_size, self.seq_length - half_seq_length), dtype=tf.int32)
        attn_mask = tf.concat([attn_mask_begin, attn_mask_end], axis=1)

        # first forward pass
Sylvain Gugger's avatar
Sylvain Gugger committed
216
        output, past = model(input_ids, attention_mask=attn_mask).to_tuple()
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)

        # change a random masked slice from input_ids
        random_seq_idx_to_change = ids_tensor((1,), half_seq_length).numpy() + 1
        random_other_next_tokens = ids_tensor((self.batch_size, self.seq_length), config.vocab_size)
        vector_condition = tf.range(self.seq_length) == (self.seq_length - random_seq_idx_to_change)
        condition = tf.transpose(
            tf.broadcast_to(tf.expand_dims(vector_condition, -1), (self.seq_length, self.batch_size))
        )
        input_ids = tf.where(condition, random_other_next_tokens, input_ids)

        # append to next input_ids and attn_mask
        next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
        attn_mask = tf.concat([attn_mask, tf.ones((shape_list(attn_mask)[0], 1), dtype=tf.int32)], axis=1)

        # get two different outputs
Sylvain Gugger's avatar
Sylvain Gugger committed
235
236
        output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"]
        output_from_past = model(next_tokens, past=past, attention_mask=attn_mask)["last_hidden_state"]
237
238
239
240
241
242
243
244
245

        # select random slice
        random_slice_idx = int(ids_tensor((1,), shape_list(output_from_past)[-1]))
        output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx]
        output_from_past_slice = output_from_past[:, 0, random_slice_idx]

        # test that outputs are equal for slice
        tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-12)

246
247
248
249
250
    def create_and_check_gpt2_model_past_large_inputs(
        self, config, input_ids, input_mask, head_mask, token_type_ids, *args
    ):
        model = TFGPT2Model(config=config)

251
252
253
254
255
        input_ids = input_ids[:1, :]
        input_mask = input_mask[:1, :]
        token_type_ids = token_type_ids[:1, :]
        self.batch_size = 1

256
        # first forward pass
257
        outputs = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, use_cache=True)
258
259
260
261
262

        output, past = outputs.to_tuple()

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
263
        next_attn_mask = ids_tensor((self.batch_size, 3), 2)
264
        next_token_types = ids_tensor((self.batch_size, 3), self.type_vocab_size)
265
266
267

        # append to next input_ids and token_type_ids
        next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
268
        next_attention_mask = tf.concat([input_mask, next_attn_mask], axis=-1)
269
        next_token_type_ids = tf.concat([token_type_ids, next_token_types], axis=-1)
270
271
272
273
274
275
276

        output_from_no_past = model(
            next_input_ids, token_type_ids=next_token_type_ids, attention_mask=next_attention_mask
        )["last_hidden_state"]
        output_from_past = model(
            next_tokens, token_type_ids=next_token_types, attention_mask=next_attention_mask, past=past
        )["last_hidden_state"]
277
278
279
280
281
282
283
284
        self.parent.assertTrue(output_from_past.shape[1] == next_tokens.shape[1])

        # select random slice
        random_slice_idx = int(ids_tensor((1,), shape_list(output_from_past)[-1]))
        output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx]
        output_from_past_slice = output_from_past[:, :, random_slice_idx]

        # test that outputs are equal for slice
285
        tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3)
286

287
288
289
290
291
292
293
    def create_and_check_gpt2_lm_head(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = TFGPT2LMHeadModel(config=config)
        inputs = {
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "token_type_ids": token_type_ids,
        }
Sylvain Gugger's avatar
Sylvain Gugger committed
294
        result = model(inputs)
295
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
296

Matt's avatar
Matt committed
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
    def create_and_check_gpt2_xla_generate(self, config, input_ids, *args):
        config.eos_token_id = None
        config.max_length = 10
        model = TFGPT2LMHeadModel(config=config)

        # make sure there are no pad tokens in prompt
        input_ids = tf.where(input_ids != config.pad_token_id, input_ids, config.pad_token_id - 1)

        generated = model.generate(input_ids)

        generate_xla = tf.function(model.generate, jit_compile=True)
        generated_xla = generate_xla(input_ids)

        self.parent.assertListEqual(generated.numpy().tolist(), generated_xla.numpy().tolist())

312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
    def create_and_check_gpt2_double_head(
        self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, *args
    ):
        model = TFGPT2DoubleHeadsModel(config=config)

        multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1))
        multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
        multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1))

        inputs = {
            "input_ids": multiple_choice_inputs_ids,
            "mc_token_ids": mc_token_ids,
            "attention_mask": multiple_choice_input_mask,
            "token_type_ids": multiple_choice_token_type_ids,
        }
Sylvain Gugger's avatar
Sylvain Gugger committed
327
        result = model(inputs)
328
        self.parent.assertEqual(
329
            result.logits.shape, (self.batch_size, self.num_choices, self.seq_length, self.vocab_size)
330
        )
331
        self.parent.assertEqual(result.mc_logits.shape, (self.batch_size, self.num_choices))
332

333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
    def create_and_check_gpt2_for_sequence_classification(
        self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, *args
    ):
        config.num_labels = self.num_labels
        inputs = {
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "token_type_ids": token_type_ids,
            "labels": sequence_labels,
        }
        model = TFGPT2ForSequenceClassification(config)

        result = model(inputs)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))

348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()

        (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs

        inputs_dict = {
            "input_ids": input_ids,
            "token_type_ids": token_type_ids,
            "attention_mask": input_mask,
        }
        return config, inputs_dict


371
@require_tf
372
class TFGPT2ModelTest(TFModelTesterMixin, TFCoreModelTesterMixin, unittest.TestCase):
thomwolf's avatar
thomwolf committed
373

374
375
376
377
378
    all_model_classes = (
        (TFGPT2Model, TFGPT2LMHeadModel, TFGPT2ForSequenceClassification, TFGPT2DoubleHeadsModel)
        if is_tf_available()
        else ()
    )
379
    all_generative_model_classes = (TFGPT2LMHeadModel,) if is_tf_available() else ()
380
    test_head_masking = False
381
382
    test_onnx = True
    onnx_min_opset = 10
thomwolf's avatar
thomwolf committed
383
384

    def setUp(self):
385
        self.model_tester = TFGPT2ModelTester(self)
386
        self.config_tester = ConfigTester(self, config_class=GPT2Config, n_embd=37)
thomwolf's avatar
thomwolf committed
387
388
389
390
391
392
393
394

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_gpt2_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_model(*config_and_inputs)

395
396
397
398
399
400
401
402
    def test_gpt2_model_past(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_model_past(*config_and_inputs)

    def test_gpt2_model_att_mask_past(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_model_attention_mask_past(*config_and_inputs)

403
404
405
406
    def test_gpt2_model_past_large_inputs(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_model_past_large_inputs(*config_and_inputs)

thomwolf's avatar
thomwolf committed
407
408
409
410
    def test_gpt2_lm_head(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_lm_head(*config_and_inputs)

Matt's avatar
Matt committed
411
412
413
414
    def test_gpt2_xla_generate(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_xla_generate(*config_and_inputs)

thomwolf's avatar
thomwolf committed
415
416
417
418
    def test_gpt2_double_head(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_double_head(*config_and_inputs)

419
420
421
422
423
424
    def test_model_common_attributes(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer)
425
426
427
428
429
430
431
432
433
434
435

            if model_class in self.all_generative_model_classes:
                x = model.get_output_embeddings()
                assert isinstance(x, tf.keras.layers.Layer)
                name = model.get_bias()
                assert name is None
            else:
                x = model.get_output_embeddings()
                assert x is None
                name = model.get_bias()
                assert name is None
436

437
438
439
440
    def test_gpt2_sequence_classification_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_for_sequence_classification(*config_and_inputs)

441
    @slow
thomwolf's avatar
thomwolf committed
442
    def test_model_from_pretrained(self):
443
        for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
444
            model = TFGPT2Model.from_pretrained(model_name)
thomwolf's avatar
thomwolf committed
445
            self.assertIsNotNone(model)
446
447


448
@require_tf
449
class TFGPT2ModelLanguageGenerationTest(unittest.TestCase):
patrickvonplaten's avatar
patrickvonplaten committed
450
    @slow
451
452
453
454
455
456
457
458
459
    def test_lm_generate_distilgpt2(self):
        model = TFGPT2LMHeadModel.from_pretrained("distilgpt2")
        input_ids = tf.convert_to_tensor([[464, 1893]], dtype=tf.int32)  # The president

        # The president of the United States, and the president of the United Kingdom, have been in the White
        # fmt: off
        expected_output_ids = [464, 1893, 286, 262, 1578, 1829, 11, 290, 262, 1893, 286, 262, 1578, 7526, 11, 423, 587, 287, 262, 2635]
        # fmt: on

patrickvonplaten's avatar
patrickvonplaten committed
460
        output_ids = model.generate(input_ids, do_sample=False)
461
        self.assertListEqual(output_ids[0].numpy().tolist(), expected_output_ids)
462
463

    @slow
464
    def test_lm_generate_greedy_distilgpt2_batch_special(self):
465
        model = TFGPT2LMHeadModel.from_pretrained("distilgpt2")
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
        tokenizer = GPT2Tokenizer.from_pretrained("distilgpt2")

        tokenizer.pad_token = tokenizer.eos_token
        tokenizer.padding_side = "left"

        sentences = ["Today is a beautiful day and", "Yesterday was"]
        input_ids = tokenizer(sentences, return_tensors="tf", padding=True).input_ids

        generation_kwargs = {
            "bad_words_ids": [tokenizer("is").input_ids, tokenizer("angry about").input_ids],
            "no_repeat_ngram_size": 2,
            "do_sample": False,
            "repetition_penalty": 1.3,
        }

        output_ids = model.generate(input_ids, **generation_kwargs)

        output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
        expected_output_string = [
            "Today is a beautiful day and I am so happy to be able take part in this amazing event.",
            "Yesterday was a very busy day for the first time since I started writing this post",
        ]
        self.assertListEqual(output_strings, expected_output_string)

490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
    @slow
    def test_lm_generate_sample_distilgpt2_batch_special(self):
        model = TFGPT2LMHeadModel.from_pretrained("distilgpt2")
        tokenizer = GPT2Tokenizer.from_pretrained("distilgpt2")

        tokenizer.pad_token = tokenizer.eos_token
        tokenizer.padding_side = "left"

        sentences = ["Today is a beautiful day and", "Yesterday was"]
        input_ids = tokenizer(sentences, return_tensors="tf", padding=True).input_ids

        generation_kwargs = {
            "do_sample": True,
            "bad_words_ids": [tokenizer("is").input_ids, tokenizer("angry about").input_ids],
            "no_repeat_ngram_size": 2,
            "repetition_penalty": 1.3,
            "temperature": 1.5,
            "top_k": 500,
            "top_p": 0.9,
        }

511
512
513
514
515
        # forces the generation to happen on CPU, to avoid GPU-related quirks
        with tf.device(":/CPU:0"):
            tf.random.set_seed(42)  # deterministic sampling sequence -> deterministic generation
            output_ids = model.generate(input_ids, **generation_kwargs)

516
517
518
519
520
521
522
523
        output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True)

        expected_output_string = [
            "Today is a beautiful day and this makes finding holiday travel easier for you to do other project\nOh",
            "Yesterday was an enjoyable but especially great note though it certainly upset many Democrats who say",
        ]
        self.assertListEqual(output_strings, expected_output_string)

524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
    @slow
    def test_lm_generate_greedy_distilgpt2_beam_search_special(self):
        model = TFGPT2LMHeadModel.from_pretrained("distilgpt2")
        tokenizer = GPT2Tokenizer.from_pretrained("distilgpt2")

        tokenizer.pad_token = tokenizer.eos_token
        tokenizer.padding_side = "left"

        sentences = ["Today is a beautiful day and", "Yesterday was"]
        input_ids = tokenizer(sentences, return_tensors="tf", padding=True).input_ids

        generation_kwargs = {
            "bad_words_ids": [tokenizer("is").input_ids, tokenizer("angry about").input_ids],
            "no_repeat_ngram_size": 2,
            "do_sample": False,
            "repetition_penalty": 1.3,
            "num_beams": 2,
        }

        output_ids = model.generate(input_ids, **generation_kwargs)

        output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
        expected_output_string = [
            "Today is a beautiful day and I hope you enjoy it.\nI am very happy to announce that",
            "Yesterday was the first time I've ever seen a game where you can play with",
        ]
        self.assertListEqual(output_strings, expected_output_string)

552
553
554
555
    @slow
    def test_lm_generate_gpt2(self):
        model = TFGPT2LMHeadModel.from_pretrained("gpt2")
        input_ids = tf.convert_to_tensor([[464, 3290]], dtype=tf.int32)  # The dog
556

557
558
559
560
        # The dog was found in a field near the intersection of West and West Streets.\n\nThe dog
        # fmt: off
        expected_output_ids = [464, 3290, 373, 1043, 287, 257, 2214, 1474, 262, 16246, 286, 2688, 290, 2688, 27262, 13, 198, 198, 464, 3290]
        # fmt: on
patrickvonplaten's avatar
patrickvonplaten committed
561
        output_ids = model.generate(input_ids, do_sample=False)
562
        self.assertListEqual(output_ids[0].numpy().tolist(), expected_output_ids)
Matt's avatar
Matt committed
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577

    @slow
    def test_lm_generate_gpt2_xla(self):
        """This test gives the exact same results as the non-xla test above"""
        model = TFGPT2LMHeadModel.from_pretrained("gpt2")
        input_ids = tf.convert_to_tensor([[464, 3290]], dtype=tf.int32)  # The dog

        # The dog was found in a field near the intersection of West and West Streets.\n\nThe dog
        # fmt: off
        expected_output_ids = [464, 3290, 373, 1043, 287, 257, 2214, 1474, 262, 16246, 286, 2688, 290, 2688, 27262, 13, 198, 198, 464, 3290]
        # fmt: on
        xla_generate = tf.function(model.generate, jit_compile=True)

        output_ids = xla_generate(input_ids, do_sample=False)
        self.assertListEqual(output_ids[0].numpy().tolist(), expected_output_ids)