test_modeling_tf_gpt2.py 20.9 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16
17
import unittest

Aymeric Augustin's avatar
Aymeric Augustin committed
18
from transformers import GPT2Config, is_tf_available
19
from transformers.testing_utils import require_tf, slow
thomwolf's avatar
thomwolf committed
20

21
22
23
from ..test_configuration_common import ConfigTester
from ..test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ..utils.test_modeling_tf_core import TFCoreModelTesterMixin
thomwolf's avatar
thomwolf committed
24
25


26
if is_tf_available():
thomwolf's avatar
thomwolf committed
27
    import tensorflow as tf
28

29
    from transformers import GPT2Tokenizer
Sylvain Gugger's avatar
Sylvain Gugger committed
30
    from transformers.models.gpt2.modeling_tf_gpt2 import (
31
        TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST,
32
        TFGPT2DoubleHeadsModel,
33
        TFGPT2ForSequenceClassification,
34
35
        TFGPT2LMHeadModel,
        TFGPT2Model,
36
    )
37
    from transformers.tf_utils import shape_list
thomwolf's avatar
thomwolf committed
38
39


40
41
class TFGPT2ModelTester:
    def __init__(
Lysandre's avatar
Lysandre committed
42
43
        self,
        parent,
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
    ):
        self.parent = parent
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_token_type_ids = True
        self.use_input_mask = True
        self.use_labels = True
        self.use_mc_token_ids = True
        self.vocab_size = 99
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.intermediate_size = 37
        self.hidden_act = "gelu"
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 16
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.scope = None
        self.bos_token_id = self.vocab_size - 1
        self.eos_token_id = self.vocab_size - 1
70
        self.pad_token_id = self.vocab_size - 1
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
            input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        mc_token_ids = None
        if self.use_mc_token_ids:
            mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = GPT2Config(
            vocab_size=self.vocab_size,
            n_embd=self.hidden_size,
            n_layer=self.num_hidden_layers,
            n_head=self.num_attention_heads,
            # intermediate_size=self.intermediate_size,
            # hidden_act=self.hidden_act,
            # hidden_dropout_prob=self.hidden_dropout_prob,
            # attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            n_positions=self.max_position_embeddings,
            # type_vocab_size=self.type_vocab_size,
            # initializer_range=self.initializer_range
            bos_token_id=self.bos_token_id,
            eos_token_id=self.eos_token_id,
109
110
            pad_token_id=self.pad_token_id,
            return_dict=True,
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
        )

        head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)

        return (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        )

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
    def prepare_config_and_inputs_for_decoder(self):
        (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = self.prepare_config_and_inputs()

        encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
        encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

        return (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            sequence_labels,
            token_labels,
            choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        )

156
157
158
159
160
161
162
    def create_and_check_gpt2_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = TFGPT2Model(config=config)
        inputs = {
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "token_type_ids": token_type_ids,
        }
Sylvain Gugger's avatar
Sylvain Gugger committed
163
        result = model(inputs)
164
165

        inputs = [input_ids, None, input_mask]  # None is the input for 'past'
Sylvain Gugger's avatar
Sylvain Gugger committed
166
        result = model(inputs)
167

Sylvain Gugger's avatar
Sylvain Gugger committed
168
        result = model(input_ids)
169

170
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
171
172
173
174
175

    def create_and_check_gpt2_model_past(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = TFGPT2Model(config=config)

        # first forward pass
176
177
178
179
180
181
182
        outputs = model(input_ids, token_type_ids=token_type_ids, use_cache=True)
        outputs_use_cache_conf = model(input_ids, token_type_ids=token_type_ids)
        outputs_no_past = model(input_ids, token_type_ids=token_type_ids, use_cache=False)

        self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf))
        self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1)

Sylvain Gugger's avatar
Sylvain Gugger committed
183
        output, past = outputs.to_tuple()
184
185
186
187
188
189
190
191
192

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
        next_token_types = ids_tensor([self.batch_size, 1], self.type_vocab_size)

        # append to next input_ids and token_type_ids
        next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
        next_token_type_ids = tf.concat([token_type_ids, next_token_types], axis=-1)

Sylvain Gugger's avatar
Sylvain Gugger committed
193
194
        output_from_no_past = model(next_input_ids, token_type_ids=next_token_type_ids)["last_hidden_state"]
        output_from_past = model(next_tokens, token_type_ids=next_token_types, past=past)["last_hidden_state"]
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

        # select random slice
        random_slice_idx = int(ids_tensor((1,), shape_list(output_from_past)[-1]))
        output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx]
        output_from_past_slice = output_from_past[:, 0, random_slice_idx]

        # test that outputs are equal for slice
        tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-6)

    def create_and_check_gpt2_model_attention_mask_past(
        self, config, input_ids, input_mask, head_mask, token_type_ids, *args
    ):
        model = TFGPT2Model(config=config)

        # create attention mask
        half_seq_length = self.seq_length // 2
        attn_mask_begin = tf.ones((self.batch_size, half_seq_length), dtype=tf.int32)
        attn_mask_end = tf.zeros((self.batch_size, self.seq_length - half_seq_length), dtype=tf.int32)
        attn_mask = tf.concat([attn_mask_begin, attn_mask_end], axis=1)

        # first forward pass
Sylvain Gugger's avatar
Sylvain Gugger committed
216
        output, past = model(input_ids, attention_mask=attn_mask).to_tuple()
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)

        # change a random masked slice from input_ids
        random_seq_idx_to_change = ids_tensor((1,), half_seq_length).numpy() + 1
        random_other_next_tokens = ids_tensor((self.batch_size, self.seq_length), config.vocab_size)
        vector_condition = tf.range(self.seq_length) == (self.seq_length - random_seq_idx_to_change)
        condition = tf.transpose(
            tf.broadcast_to(tf.expand_dims(vector_condition, -1), (self.seq_length, self.batch_size))
        )
        input_ids = tf.where(condition, random_other_next_tokens, input_ids)

        # append to next input_ids and attn_mask
        next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
        attn_mask = tf.concat([attn_mask, tf.ones((shape_list(attn_mask)[0], 1), dtype=tf.int32)], axis=1)

        # get two different outputs
Sylvain Gugger's avatar
Sylvain Gugger committed
235
236
        output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"]
        output_from_past = model(next_tokens, past=past, attention_mask=attn_mask)["last_hidden_state"]
237
238
239
240
241
242
243
244
245

        # select random slice
        random_slice_idx = int(ids_tensor((1,), shape_list(output_from_past)[-1]))
        output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx]
        output_from_past_slice = output_from_past[:, 0, random_slice_idx]

        # test that outputs are equal for slice
        tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-12)

246
247
248
249
250
    def create_and_check_gpt2_model_past_large_inputs(
        self, config, input_ids, input_mask, head_mask, token_type_ids, *args
    ):
        model = TFGPT2Model(config=config)

251
252
253
254
255
        input_ids = input_ids[:1, :]
        input_mask = input_mask[:1, :]
        token_type_ids = token_type_ids[:1, :]
        self.batch_size = 1

256
        # first forward pass
257
        outputs = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, use_cache=True)
258
259
260
261
262

        output, past = outputs.to_tuple()

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
263
        next_attn_mask = ids_tensor((self.batch_size, 3), 2)
264
        next_token_types = ids_tensor((self.batch_size, 3), self.type_vocab_size)
265
266
267

        # append to next input_ids and token_type_ids
        next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
268
        next_attention_mask = tf.concat([input_mask, next_attn_mask], axis=-1)
269
        next_token_type_ids = tf.concat([token_type_ids, next_token_types], axis=-1)
270
271
272
273
274
275
276

        output_from_no_past = model(
            next_input_ids, token_type_ids=next_token_type_ids, attention_mask=next_attention_mask
        )["last_hidden_state"]
        output_from_past = model(
            next_tokens, token_type_ids=next_token_types, attention_mask=next_attention_mask, past=past
        )["last_hidden_state"]
277
278
279
280
281
282
283
284
        self.parent.assertTrue(output_from_past.shape[1] == next_tokens.shape[1])

        # select random slice
        random_slice_idx = int(ids_tensor((1,), shape_list(output_from_past)[-1]))
        output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx]
        output_from_past_slice = output_from_past[:, :, random_slice_idx]

        # test that outputs are equal for slice
285
        tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3)
286

287
288
289
290
291
292
293
    def create_and_check_gpt2_lm_head(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = TFGPT2LMHeadModel(config=config)
        inputs = {
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "token_type_ids": token_type_ids,
        }
Sylvain Gugger's avatar
Sylvain Gugger committed
294
        result = model(inputs)
295
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311

    def create_and_check_gpt2_double_head(
        self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, *args
    ):
        model = TFGPT2DoubleHeadsModel(config=config)

        multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1))
        multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
        multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1))

        inputs = {
            "input_ids": multiple_choice_inputs_ids,
            "mc_token_ids": mc_token_ids,
            "attention_mask": multiple_choice_input_mask,
            "token_type_ids": multiple_choice_token_type_ids,
        }
Sylvain Gugger's avatar
Sylvain Gugger committed
312
        result = model(inputs)
313
        self.parent.assertEqual(
314
            result.logits.shape, (self.batch_size, self.num_choices, self.seq_length, self.vocab_size)
315
        )
316
        self.parent.assertEqual(result.mc_logits.shape, (self.batch_size, self.num_choices))
317

318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
    def create_and_check_gpt2_for_sequence_classification(
        self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, *args
    ):
        config.num_labels = self.num_labels
        inputs = {
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "token_type_ids": token_type_ids,
            "labels": sequence_labels,
        }
        model = TFGPT2ForSequenceClassification(config)

        result = model(inputs)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))

333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()

        (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs

        inputs_dict = {
            "input_ids": input_ids,
            "token_type_ids": token_type_ids,
            "attention_mask": input_mask,
        }
        return config, inputs_dict


356
@require_tf
357
class TFGPT2ModelTest(TFModelTesterMixin, TFCoreModelTesterMixin, unittest.TestCase):
thomwolf's avatar
thomwolf committed
358

359
360
361
362
363
    all_model_classes = (
        (TFGPT2Model, TFGPT2LMHeadModel, TFGPT2ForSequenceClassification, TFGPT2DoubleHeadsModel)
        if is_tf_available()
        else ()
    )
364
    all_generative_model_classes = (TFGPT2LMHeadModel,) if is_tf_available() else ()
365
    test_head_masking = False
366
367
    test_onnx = True
    onnx_min_opset = 10
thomwolf's avatar
thomwolf committed
368
369

    def setUp(self):
370
        self.model_tester = TFGPT2ModelTester(self)
371
        self.config_tester = ConfigTester(self, config_class=GPT2Config, n_embd=37)
thomwolf's avatar
thomwolf committed
372
373
374
375
376
377
378
379

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_gpt2_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_model(*config_and_inputs)

380
381
382
383
384
385
386
387
    def test_gpt2_model_past(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_model_past(*config_and_inputs)

    def test_gpt2_model_att_mask_past(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_model_attention_mask_past(*config_and_inputs)

388
389
390
391
    def test_gpt2_model_past_large_inputs(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_model_past_large_inputs(*config_and_inputs)

thomwolf's avatar
thomwolf committed
392
393
394
395
396
397
398
399
    def test_gpt2_lm_head(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_lm_head(*config_and_inputs)

    def test_gpt2_double_head(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_double_head(*config_and_inputs)

400
401
402
403
404
405
    def test_model_common_attributes(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer)
406
407
408
409
410
411
412
413
414
415
416

            if model_class in self.all_generative_model_classes:
                x = model.get_output_embeddings()
                assert isinstance(x, tf.keras.layers.Layer)
                name = model.get_bias()
                assert name is None
            else:
                x = model.get_output_embeddings()
                assert x is None
                name = model.get_bias()
                assert name is None
417

418
419
420
421
    def test_gpt2_sequence_classification_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_for_sequence_classification(*config_and_inputs)

422
    @slow
thomwolf's avatar
thomwolf committed
423
    def test_model_from_pretrained(self):
424
        for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
425
            model = TFGPT2Model.from_pretrained(model_name)
thomwolf's avatar
thomwolf committed
426
            self.assertIsNotNone(model)
427
428


429
@require_tf
430
class TFGPT2ModelLanguageGenerationTest(unittest.TestCase):
patrickvonplaten's avatar
patrickvonplaten committed
431
    @slow
432
433
434
435
436
437
438
439
440
    def test_lm_generate_distilgpt2(self):
        model = TFGPT2LMHeadModel.from_pretrained("distilgpt2")
        input_ids = tf.convert_to_tensor([[464, 1893]], dtype=tf.int32)  # The president

        # The president of the United States, and the president of the United Kingdom, have been in the White
        # fmt: off
        expected_output_ids = [464, 1893, 286, 262, 1578, 1829, 11, 290, 262, 1893, 286, 262, 1578, 7526, 11, 423, 587, 287, 262, 2635]
        # fmt: on

patrickvonplaten's avatar
patrickvonplaten committed
441
        output_ids = model.generate(input_ids, do_sample=False)
442
        self.assertListEqual(output_ids[0].numpy().tolist(), expected_output_ids)
443
444

    @slow
445
    def test_lm_generate_greedy_distilgpt2_batch_special(self):
446
        model = TFGPT2LMHeadModel.from_pretrained("distilgpt2")
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
        tokenizer = GPT2Tokenizer.from_pretrained("distilgpt2")

        tokenizer.pad_token = tokenizer.eos_token
        tokenizer.padding_side = "left"

        sentences = ["Today is a beautiful day and", "Yesterday was"]
        input_ids = tokenizer(sentences, return_tensors="tf", padding=True).input_ids

        generation_kwargs = {
            "bad_words_ids": [tokenizer("is").input_ids, tokenizer("angry about").input_ids],
            "no_repeat_ngram_size": 2,
            "do_sample": False,
            "repetition_penalty": 1.3,
        }

        output_ids = model.generate(input_ids, **generation_kwargs)

        output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
        expected_output_string = [
            "Today is a beautiful day and I am so happy to be able take part in this amazing event.",
            "Yesterday was a very busy day for the first time since I started writing this post",
        ]
        self.assertListEqual(output_strings, expected_output_string)

471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
    @slow
    def test_lm_generate_sample_distilgpt2_batch_special(self):
        model = TFGPT2LMHeadModel.from_pretrained("distilgpt2")
        tokenizer = GPT2Tokenizer.from_pretrained("distilgpt2")

        tokenizer.pad_token = tokenizer.eos_token
        tokenizer.padding_side = "left"

        sentences = ["Today is a beautiful day and", "Yesterday was"]
        input_ids = tokenizer(sentences, return_tensors="tf", padding=True).input_ids

        generation_kwargs = {
            "do_sample": True,
            "bad_words_ids": [tokenizer("is").input_ids, tokenizer("angry about").input_ids],
            "no_repeat_ngram_size": 2,
            "repetition_penalty": 1.3,
            "temperature": 1.5,
            "top_k": 500,
            "top_p": 0.9,
        }

492
493
494
495
496
        # forces the generation to happen on CPU, to avoid GPU-related quirks
        with tf.device(":/CPU:0"):
            tf.random.set_seed(42)  # deterministic sampling sequence -> deterministic generation
            output_ids = model.generate(input_ids, **generation_kwargs)

497
498
499
500
501
502
503
504
        output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True)

        expected_output_string = [
            "Today is a beautiful day and this makes finding holiday travel easier for you to do other project\nOh",
            "Yesterday was an enjoyable but especially great note though it certainly upset many Democrats who say",
        ]
        self.assertListEqual(output_strings, expected_output_string)

505
506
507
508
    @slow
    def test_lm_generate_gpt2(self):
        model = TFGPT2LMHeadModel.from_pretrained("gpt2")
        input_ids = tf.convert_to_tensor([[464, 3290]], dtype=tf.int32)  # The dog
509

510
511
512
513
        # The dog was found in a field near the intersection of West and West Streets.\n\nThe dog
        # fmt: off
        expected_output_ids = [464, 3290, 373, 1043, 287, 257, 2214, 1474, 262, 16246, 286, 2688, 290, 2688, 27262, 13, 198, 198, 464, 3290]
        # fmt: on
patrickvonplaten's avatar
patrickvonplaten committed
514
        output_ids = model.generate(input_ids, do_sample=False)
515
        self.assertListEqual(output_ids[0].numpy().tolist(), expected_output_ids)