index.rst 25.1 KB
Newer Older
1
Transformers
Sylvain Gugger's avatar
Sylvain Gugger committed
2
=======================================================================================================================
3

4
State-of-the-art Natural Language Processing for Pytorch and TensorFlow 2.0.
thomwolf's avatar
thomwolf committed
5

6
7
8
🤗 Transformers (formerly known as `pytorch-transformers` and `pytorch-pretrained-bert`) provides general-purpose
architectures (BERT, GPT-2, RoBERTa, XLM, DistilBert, XLNet...) for Natural Language Understanding (NLU) and Natural
Language Generation (NLG) with over 32+ pretrained models in 100+ languages and deep interoperability between
9
10
11
TensorFlow 2.0 and PyTorch.

This is the documentation of our repository `transformers <https://github.com/huggingface/transformers>`_.
12

LysandreJik's avatar
LysandreJik committed
13
Features
Sylvain Gugger's avatar
Sylvain Gugger committed
14
-----------------------------------------------------------------------------------------------------------------------
LysandreJik's avatar
LysandreJik committed
15
16
17
18

- High performance on NLU and NLG tasks
- Low barrier to entry for educators and practitioners

LysandreJik's avatar
LysandreJik committed
19
20
State-of-the-art NLP for everyone:

LysandreJik's avatar
LysandreJik committed
21
22
23
24
- Deep learning researchers
- Hands-on practitioners
- AI/ML/NLP teachers and educators

LysandreJik's avatar
LysandreJik committed
25
26
Lower compute costs, smaller carbon footprint:

LysandreJik's avatar
LysandreJik committed
27
28
29
30
- Researchers can share trained models instead of always retraining
- Practitioners can reduce compute time and production costs
- 8 architectures with over 30 pretrained models, some in more than 100 languages

LysandreJik's avatar
LysandreJik committed
31
32
Choose the right framework for every part of a model's lifetime:

LysandreJik's avatar
LysandreJik committed
33
34
35
36
37
- Train state-of-the-art models in 3 lines of code
- Deep interoperability between TensorFlow 2.0 and PyTorch models
- Move a single model between TF2.0/PyTorch frameworks at will
- Seamlessly pick the right framework for training, evaluation, production

Sylvain Gugger's avatar
Sylvain Gugger committed
38
39
Experimental support for Flax with a few models right now, expected to grow in the coming months.

LysandreJik's avatar
LysandreJik committed
40
Contents
Sylvain Gugger's avatar
Sylvain Gugger committed
41
-----------------------------------------------------------------------------------------------------------------------
LysandreJik's avatar
LysandreJik committed
42

Sylvain Gugger's avatar
Sylvain Gugger committed
43
44
45
46
The documentation is organized in five parts:

- **GET STARTED** contains a quick tour, the installation instructions and some useful information about our philosophy
  and a glossary.
Sylvain Gugger's avatar
Sylvain Gugger committed
47
- **USING 🤗 TRANSFORMERS** contains general tutorials on how to use the library.
Sylvain Gugger's avatar
Sylvain Gugger committed
48
- **ADVANCED GUIDES** contains more advanced guides that are more specific to a given script or part of the library.
Santiago Castro's avatar
Santiago Castro committed
49
- **RESEARCH** focuses on tutorials that have less to do with how to use the library but more about general research in
Sylvain Gugger's avatar
Sylvain Gugger committed
50
  transformers model
51
- The three last section contain the documentation of each public class and function, grouped in:
Sylvain Gugger's avatar
Sylvain Gugger committed
52

53
54
55
    - **MAIN CLASSES** for the main classes exposing the important APIs of the library.
    - **MODELS** for the classes and functions related to each model implemented in the library.
    - **INTERNAL HELPERS** for the classes and functions we use internally.
Sylvain Gugger's avatar
Sylvain Gugger committed
56

Sylvain Gugger's avatar
Sylvain Gugger committed
57
58
The library currently contains PyTorch, Tensorflow and Flax implementations, pretrained model weights, usage scripts
and conversion utilities for the following models:
59

60
61
62
..
    This list is updated automatically from the README with `make fix-copies`. Do not update manually!

63
64
65
66
67
68
1. :doc:`ALBERT <model_doc/albert>` (from Google Research and the Toyota Technological Institute at Chicago) released
   with the paper `ALBERT: A Lite BERT for Self-supervised Learning of Language Representations
   <https://arxiv.org/abs/1909.11942>`__, by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush
   Sharma, Radu Soricut.
2. :doc:`BART <model_doc/bart>` (from Facebook) released with the paper `BART: Denoising Sequence-to-Sequence
   Pre-training for Natural Language Generation, Translation, and Comprehension
69
70
   <https://arxiv.org/pdf/1910.13461.pdf>`__ by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman
   Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer.
71
72
73
74
3. :doc:`BARThez <model_doc/barthez>` (from École polytechnique) released with the paper `BARThez: a Skilled Pretrained
   French Sequence-to-Sequence Model <https://arxiv.org/abs/2010.12321>`__ by Moussa Kamal Eddine, Antoine J.-P.
   Tixier, Michalis Vazirgiannis.
4. :doc:`BERT <model_doc/bert>` (from Google) released with the paper `BERT: Pre-training of Deep Bidirectional
75
76
   Transformers for Language Understanding <https://arxiv.org/abs/1810.04805>`__ by Jacob Devlin, Ming-Wei Chang,
   Kenton Lee and Kristina Toutanova.
77
5. :doc:`BERT For Sequence Generation <model_doc/bertgeneration>` (from Google) released with the paper `Leveraging
78
79
   Pre-trained Checkpoints for Sequence Generation Tasks <https://arxiv.org/abs/1907.12461>`__ by Sascha Rothe, Shashi
   Narayan, Aliaksei Severyn.
80
6. :doc:`Blenderbot <model_doc/blenderbot>` (from Facebook) released with the paper `Recipes for building an
Lysandre's avatar
Lysandre committed
81
82
   open-domain chatbot <https://arxiv.org/abs/2004.13637>`__ by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary
   Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
83
7. :doc:`CamemBERT <model_doc/camembert>` (from Inria/Facebook/Sorbonne) released with the paper `CamemBERT: a Tasty
84
85
   French Language Model <https://arxiv.org/abs/1911.03894>`__ by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz
   Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
86
8. :doc:`CTRL <model_doc/ctrl>` (from Salesforce) released with the paper `CTRL: A Conditional Transformer Language
87
88
   Model for Controllable Generation <https://arxiv.org/abs/1909.05858>`__ by Nitish Shirish Keskar*, Bryan McCann*,
   Lav R. Varshney, Caiming Xiong and Richard Socher.
89
9. :doc:`DeBERTa <model_doc/deberta>` (from Microsoft Research) released with the paper `DeBERTa: Decoding-enhanced
Lysandre's avatar
Lysandre committed
90
91
   BERT with Disentangled Attention <https://arxiv.org/abs/2006.03654>`__ by Pengcheng He, Xiaodong Liu, Jianfeng Gao,
   Weizhu Chen.
92
93
94
95
10. :doc:`DialoGPT <model_doc/dialogpt>` (from Microsoft Research) released with the paper `DialoGPT: Large-Scale
    Generative Pre-training for Conversational Response Generation <https://arxiv.org/abs/1911.00536>`__ by Yizhe
    Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
11. :doc:`DistilBERT <model_doc/distilbert>` (from HuggingFace), released together with the paper `DistilBERT, a
96
97
98
99
100
101
    distilled version of BERT: smaller, faster, cheaper and lighter <https://arxiv.org/abs/1910.01108>`__ by Victor
    Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into `DistilGPT2
    <https://github.com/huggingface/transformers/tree/master/examples/distillation>`__, RoBERTa into `DistilRoBERTa
    <https://github.com/huggingface/transformers/tree/master/examples/distillation>`__, Multilingual BERT into
    `DistilmBERT <https://github.com/huggingface/transformers/tree/master/examples/distillation>`__ and a German
    version of DistilBERT.
102
12. :doc:`DPR <model_doc/dpr>` (from Facebook) released with the paper `Dense Passage Retrieval for Open-Domain
103
104
    Question Answering <https://arxiv.org/abs/2004.04906>`__ by Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick
    Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
105
13. :doc:`ELECTRA <model_doc/electra>` (from Google Research/Stanford University) released with the paper `ELECTRA:
106
107
    Pre-training text encoders as discriminators rather than generators <https://arxiv.org/abs/2003.10555>`__ by Kevin
    Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
108
14. :doc:`FlauBERT <model_doc/flaubert>` (from CNRS) released with the paper `FlauBERT: Unsupervised Language Model
109
110
    Pre-training for French <https://arxiv.org/abs/1912.05372>`__ by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne,
    Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
111
15. :doc:`Funnel Transformer <model_doc/funnel>` (from CMU/Google Brain) released with the paper `Funnel-Transformer:
112
113
    Filtering out Sequential Redundancy for Efficient Language Processing <https://arxiv.org/abs/2006.03236>`__ by
    Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
114
16. :doc:`GPT <model_doc/gpt>` (from OpenAI) released with the paper `Improving Language Understanding by Generative
115
116
    Pre-Training <https://blog.openai.com/language-unsupervised/>`__ by Alec Radford, Karthik Narasimhan, Tim Salimans
    and Ilya Sutskever.
117
17. :doc:`GPT-2 <model_doc/gpt2>` (from OpenAI) released with the paper `Language Models are Unsupervised Multitask
118
119
    Learners <https://blog.openai.com/better-language-models/>`__ by Alec Radford*, Jeffrey Wu*, Rewon Child, David
    Luan, Dario Amodei** and Ilya Sutskever**.
120
18. :doc:`LayoutLM <model_doc/layoutlm>` (from Microsoft Research Asia) released with the paper `LayoutLM: Pre-training
121
122
    of Text and Layout for Document Image Understanding <https://arxiv.org/abs/1912.13318>`__ by Yiheng Xu, Minghao Li,
    Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
123
19. :doc:`Longformer <model_doc/longformer>` (from AllenAI) released with the paper `Longformer: The Long-Document
124
    Transformer <https://arxiv.org/abs/2004.05150>`__ by Iz Beltagy, Matthew E. Peters, Arman Cohan.
125
20. :doc:`LXMERT <model_doc/lxmert>` (from UNC Chapel Hill) released with the paper `LXMERT: Learning Cross-Modality
126
127
    Encoder Representations from Transformers for Open-Domain Question Answering <https://arxiv.org/abs/1908.07490>`__
    by Hao Tan and Mohit Bansal.
128
21. :doc:`MarianMT <model_doc/marian>` Machine translation models trained using `OPUS <http://opus.nlpl.eu/>`__ data by
129
130
    Jörg Tiedemann. The `Marian Framework <https://marian-nmt.github.io/>`__ is being developed by the Microsoft
    Translator Team.
131
22. :doc:`MBart <model_doc/mbart>` (from Facebook) released with the paper `Multilingual Denoising Pre-training for
132
133
    Neural Machine Translation <https://arxiv.org/abs/2001.08210>`__ by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li,
    Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
134
23. :doc:`MT5 <model_doc/mt5>` (from Google AI) released with the paper `mT5: A massively multilingual pre-trained
Patrick von Platen's avatar
Patrick von Platen committed
135
136
    text-to-text transformer <https://arxiv.org/abs/2010.11934>`__ by Linting Xue, Noah Constant, Adam Roberts, Mihir
    Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
137
24. :doc:`Pegasus <model_doc/pegasus>` (from Google) released with the paper `PEGASUS: Pre-training with Extracted
138
139
    Gap-sentences for Abstractive Summarization <https://arxiv.org/abs/1912.08777>`__> by Jingqing Zhang, Yao Zhao,
    Mohammad Saleh and Peter J. Liu.
140
25. :doc:`ProphetNet <model_doc/prophetnet>` (from Microsoft Research) released with the paper `ProphetNet: Predicting
Lysandre's avatar
Lysandre committed
141
142
    Future N-gram for Sequence-to-Sequence Pre-training <https://arxiv.org/abs/2001.04063>`__ by Yu Yan, Weizhen Qi,
    Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
143
26. :doc:`Reformer <model_doc/reformer>` (from Google Research) released with the paper `Reformer: The Efficient
144
    Transformer <https://arxiv.org/abs/2001.04451>`__ by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
145
27. :doc:`RoBERTa <model_doc/roberta>` (from Facebook), released together with the paper a `Robustly Optimized BERT
146
147
    Pretraining Approach <https://arxiv.org/abs/1907.11692>`__ by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar
    Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov. ultilingual BERT into `DistilmBERT
148
149
    <https://github.com/huggingface/transformers/tree/master/examples/distillation>`__ and a German version of
    DistilBERT.
150
28. :doc:`SqueezeBert <model_doc/squeezebert>` released with the paper `SqueezeBERT: What can computer vision teach NLP
Lysandre's avatar
Lysandre committed
151
152
    about efficient neural networks? <https://arxiv.org/abs/2006.11316>`__ by Forrest N. Iandola, Albert E. Shaw, Ravi
    Krishna, and Kurt W. Keutzer.
153
29. :doc:`T5 <model_doc/t5>` (from Google AI) released with the paper `Exploring the Limits of Transfer Learning with a
154
155
    Unified Text-to-Text Transformer <https://arxiv.org/abs/1910.10683>`__ by Colin Raffel and Noam Shazeer and Adam
    Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
156
30. :doc:`Transformer-XL <model_doc/transformerxl>` (from Google/CMU) released with the paper `Transformer-XL:
157
158
    Attentive Language Models Beyond a Fixed-Length Context <https://arxiv.org/abs/1901.02860>`__ by Zihang Dai*,
    Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
159
31. :doc:`XLM <model_doc/xlm>` (from Facebook) released together with the paper `Cross-lingual Language Model
160
    Pretraining <https://arxiv.org/abs/1901.07291>`__ by Guillaume Lample and Alexis Conneau.
161
32. :doc:`XLM-ProphetNet <model_doc/xlmprophetnet>` (from Microsoft Research) released with the paper `ProphetNet:
Lysandre's avatar
Lysandre committed
162
163
    Predicting Future N-gram for Sequence-to-Sequence Pre-training <https://arxiv.org/abs/2001.04063>`__ by Yu Yan,
    Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
164
33. :doc:`XLM-RoBERTa <model_doc/xlmroberta>` (from Facebook AI), released together with the paper `Unsupervised
165
166
167
    Cross-lingual Representation Learning at Scale <https://arxiv.org/abs/1911.02116>`__ by Alexis Conneau*, Kartikay
    Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke
    Zettlemoyer and Veselin Stoyanov.
168
34. :doc:`XLNet <model_doc/xlnet>` (from Google/CMU) released with the paper `​XLNet: Generalized Autoregressive
169
170
    Pretraining for Language Understanding <https://arxiv.org/abs/1906.08237>`__ by Zhilin Yang*, Zihang Dai*, Yiming
    Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
171
35. `Other community models <https://huggingface.co/models>`__, contributed by the `community
172
    <https://huggingface.co/users>`__.
LysandreJik's avatar
LysandreJik committed
173

Sylvain Gugger's avatar
Sylvain Gugger committed
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262

The table below represents the current support in the library for each of those models, whether they have a Python
tokenizer (called "slow"). A "fast" tokenizer backed by the 🤗 Tokenizers library, whether they have support in PyTorch,
TensorFlow and/or Flax.

..
    This table is updated automatically from the auto modules with `make fix-copies`. Do not update manually!

.. rst-class:: center-aligned-table

+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|            Model            | Tokenizer slow | Tokenizer fast | PyTorch support | TensorFlow support | Flax Support |
+=============================+================+================+=================+====================+==============+
|           ALBERT            |       ✅       |       ✅       |       ✅        |         ✅         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|            BART             |       ✅       |       ✅       |       ✅        |         ✅         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|            BERT             |       ✅       |       ✅       |       ✅        |         ✅         |      ✅      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|       Bert Generation       |       ✅       |       ❌       |       ✅        |         ❌         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|         Blenderbot          |       ✅       |       ❌       |       ✅        |         ✅         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|            CTRL             |       ✅       |       ❌       |       ✅        |         ✅         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|          CamemBERT          |       ✅       |       ✅       |       ✅        |         ✅         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|             DPR             |       ✅       |       ✅       |       ✅        |         ✅         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|           DeBERTa           |       ✅       |       ❌       |       ✅        |         ❌         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|         DistilBERT          |       ✅       |       ✅       |       ✅        |         ✅         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|           ELECTRA           |       ✅       |       ✅       |       ✅        |         ✅         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|       Encoder decoder       |       ❌       |       ❌       |       ✅        |         ❌         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| FairSeq Machine-Translation |       ✅       |       ❌       |       ✅        |         ❌         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|          FlauBERT           |       ✅       |       ❌       |       ✅        |         ✅         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|     Funnel Transformer      |       ✅       |       ✅       |       ✅        |         ✅         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|           LXMERT            |       ✅       |       ✅       |       ✅        |         ✅         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|          LayoutLM           |       ✅       |       ✅       |       ✅        |         ❌         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|         Longformer          |       ✅       |       ✅       |       ✅        |         ✅         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|           Marian            |       ✅       |       ❌       |       ✅        |         ✅         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|         MobileBERT          |       ✅       |       ✅       |       ✅        |         ✅         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|         OpenAI GPT          |       ✅       |       ✅       |       ✅        |         ✅         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|        OpenAI GPT-2         |       ✅       |       ✅       |       ✅        |         ✅         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|           Pegasus           |       ✅       |       ✅       |       ✅        |         ✅         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|         ProphetNet          |       ✅       |       ❌       |       ✅        |         ❌         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|             RAG             |       ✅       |       ❌       |       ✅        |         ❌         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|          Reformer           |       ✅       |       ✅       |       ✅        |         ❌         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|          RetriBERT          |       ✅       |       ✅       |       ✅        |         ❌         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|           RoBERTa           |       ✅       |       ✅       |       ✅        |         ✅         |      ✅      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|         SqueezeBERT         |       ✅       |       ✅       |       ✅        |         ❌         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|             T5              |       ✅       |       ✅       |       ✅        |         ✅         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|       Transformer-XL        |       ✅       |       ❌       |       ✅        |         ✅         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|             XLM             |       ✅       |       ❌       |       ✅        |         ✅         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|         XLM-RoBERTa         |       ✅       |       ✅       |       ✅        |         ✅         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|        XLMProphetNet        |       ✅       |       ❌       |       ✅        |         ❌         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|            XLNet            |       ✅       |       ✅       |       ✅        |         ✅         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|            mBART            |       ✅       |       ✅       |       ✅        |         ✅         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|             mT5             |       ✅       |       ✅       |       ✅        |         ✅         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+


263
264
.. toctree::
    :maxdepth: 2
265
    :caption: Get started
266

Sylvain Gugger's avatar
Sylvain Gugger committed
267
    quicktour
268
    installation
Sylvain Gugger's avatar
Sylvain Gugger committed
269
    philosophy
Lysandre's avatar
Lysandre committed
270
    glossary
271
272
273

.. toctree::
    :maxdepth: 2
Sylvain Gugger's avatar
Sylvain Gugger committed
274
    :caption: Using 🤗 Transformers
275

Sylvain Gugger's avatar
Sylvain Gugger committed
276
277
    task_summary
    model_summary
Sylvain Gugger's avatar
Sylvain Gugger committed
278
    preprocessing
279
    training
280
    model_sharing
Sylvain Gugger's avatar
Sylvain Gugger committed
281
    tokenizer_summary
282
283
284
285
286
287
288
    multilingual

.. toctree::
    :maxdepth: 2
    :caption: Advanced guides

    pretrained_models
289
    examples
290
    custom_datasets
291
    notebooks
292
    converting_tensorflow_models
293
    migration
294
    contributing
295
    testing
Funtowicz Morgan's avatar
Funtowicz Morgan committed
296
    serialization
297
298
299
300
301
302

.. toctree::
    :maxdepth: 2
    :caption: Research

    bertology
303
    perplexity
304
    benchmarks
305

thomwolf's avatar
thomwolf committed
306
307
.. toctree::
    :maxdepth: 2
308
    :caption: Main Classes
thomwolf's avatar
thomwolf committed
309

Sylvain Gugger's avatar
Sylvain Gugger committed
310
    main_classes/callback
thomwolf's avatar
thomwolf committed
311
    main_classes/configuration
312
    main_classes/logging
thomwolf's avatar
thomwolf committed
313
314
    main_classes/model
    main_classes/optimizer_schedules
315
316
    main_classes/output
    main_classes/pipelines
LysandreJik's avatar
LysandreJik committed
317
    main_classes/processors
318
319
320
321
322
323
324
325
    main_classes/tokenizer
    main_classes/trainer

.. toctree::
    :maxdepth: 2
    :caption: Models

    model_doc/albert
thomwolf's avatar
thomwolf committed
326
    model_doc/auto
327
    model_doc/bart
328
    model_doc/barthez
329
    model_doc/bert
330
    model_doc/bertgeneration
Sam Shleifer's avatar
Sam Shleifer committed
331
    model_doc/blenderbot
Lysandre's avatar
Lysandre committed
332
    model_doc/camembert
333
    model_doc/ctrl
Pengcheng He's avatar
Pengcheng He committed
334
    model_doc/deberta
335
    model_doc/dialogpt
336
    model_doc/distilbert
Quentin Lhoest's avatar
Quentin Lhoest committed
337
    model_doc/dpr
338
339
340
    model_doc/electra
    model_doc/encoderdecoder
    model_doc/flaubert
341
    model_doc/fsmt
Sylvain Gugger's avatar
Sylvain Gugger committed
342
    model_doc/funnel
Minghao Li's avatar
Minghao Li committed
343
    model_doc/layoutlm
344
345
346
347
348
    model_doc/longformer
    model_doc/lxmert
    model_doc/marian
    model_doc/mbart
    model_doc/mobilebert
Patrick von Platen's avatar
Patrick von Platen committed
349
    model_doc/mt5
350
351
352
    model_doc/gpt
    model_doc/gpt2
    model_doc/pegasus
Weizhen's avatar
Weizhen committed
353
    model_doc/prophetnet
Sylvain Gugger's avatar
Sylvain Gugger committed
354
    model_doc/rag
355
356
357
    model_doc/reformer
    model_doc/retribert
    model_doc/roberta
358
    model_doc/squeezebert
359
360
361
    model_doc/t5
    model_doc/transformerxl
    model_doc/xlm
Weizhen's avatar
Weizhen committed
362
    model_doc/xlmprophetnet
363
364
365
366
367
368
369
    model_doc/xlmroberta
    model_doc/xlnet

.. toctree::
    :maxdepth: 2
    :caption: Internal Helpers

Sylvain Gugger's avatar
Sylvain Gugger committed
370
    internal/modeling_utils
371
    internal/pipelines_utils
372
    internal/tokenization_utils
Sylvain Gugger's avatar
Sylvain Gugger committed
373
    internal/trainer_utils
374
    internal/generation_utils