test_modeling_xlnet.py 17.6 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16
17

import random
18
import unittest
thomwolf's avatar
thomwolf committed
19

20
from transformers import is_torch_available
thomwolf's avatar
thomwolf committed
21

22
from .test_configuration_common import ConfigTester
23
from .test_modeling_common import ModelTesterMixin, ids_tensor
Aymeric Augustin's avatar
Aymeric Augustin committed
24
25
26
from .utils import CACHE_DIR, require_torch, slow, torch_device


27
if is_torch_available():
thomwolf's avatar
thomwolf committed
28
29
    import torch

30
31
32
33
34
35
36
37
    from transformers import (
        XLNetConfig,
        XLNetModel,
        XLNetLMHeadModel,
        XLNetForSequenceClassification,
        XLNetForTokenClassification,
        XLNetForQuestionAnswering,
    )
38
    from transformers.modeling_xlnet import XLNET_PRETRAINED_MODEL_ARCHIVE_MAP
thomwolf's avatar
thomwolf committed
39

40
41

@require_torch
42
class XLNetModelTest(ModelTesterMixin, unittest.TestCase):
thomwolf's avatar
thomwolf committed
43

44
45
46
47
48
49
50
51
52
53
54
    all_model_classes = (
        (
            XLNetModel,
            XLNetLMHeadModel,
            XLNetForTokenClassification,
            XLNetForSequenceClassification,
            XLNetForQuestionAnswering,
        )
        if is_torch_available()
        else ()
    )
thomwolf's avatar
thomwolf committed
55
    test_pruning = False
thomwolf's avatar
thomwolf committed
56

thomwolf's avatar
thomwolf committed
57
    class XLNetModelTester(object):
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
        def __init__(
            self,
            parent,
            batch_size=13,
            seq_length=7,
            mem_len=10,
            clamp_len=-1,
            reuse_len=15,
            is_training=True,
            use_labels=True,
            vocab_size=99,
            cutoffs=[10, 50, 80],
            hidden_size=32,
            num_attention_heads=4,
            d_inner=128,
            num_hidden_layers=5,
            type_sequence_label_size=2,
            untie_r=True,
            bi_data=False,
            same_length=False,
            initializer_range=0.05,
            seed=1,
            type_vocab_size=2,
        ):
thomwolf's avatar
thomwolf committed
82
83
84
85
            self.parent = parent
            self.batch_size = batch_size
            self.seq_length = seq_length
            self.mem_len = mem_len
thomwolf's avatar
thomwolf committed
86
            # self.key_len = seq_length + mem_len
thomwolf's avatar
thomwolf committed
87
88
89
90
91
92
            self.clamp_len = clamp_len
            self.reuse_len = reuse_len
            self.is_training = is_training
            self.use_labels = use_labels
            self.vocab_size = vocab_size
            self.cutoffs = cutoffs
thomwolf's avatar
thomwolf committed
93
94
            self.hidden_size = hidden_size
            self.num_attention_heads = num_attention_heads
thomwolf's avatar
thomwolf committed
95
            self.d_inner = d_inner
thomwolf's avatar
thomwolf committed
96
            self.num_hidden_layers = num_hidden_layers
thomwolf's avatar
thomwolf committed
97
98
99
            self.bi_data = bi_data
            self.untie_r = untie_r
            self.same_length = same_length
100
            self.initializer_range = initializer_range
thomwolf's avatar
thomwolf committed
101
102
            self.seed = seed
            self.type_vocab_size = type_vocab_size
thomwolf's avatar
thomwolf committed
103
            self.type_sequence_label_size = type_sequence_label_size
thomwolf's avatar
thomwolf committed
104
105

        def prepare_config_and_inputs(self):
thomwolf's avatar
thomwolf committed
106
107
108
            input_ids_1 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
            input_ids_2 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
            segment_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
thomwolf's avatar
thomwolf committed
109
            input_mask = ids_tensor([self.batch_size, self.seq_length], 2).float()
thomwolf's avatar
thomwolf committed
110

thomwolf's avatar
thomwolf committed
111
            input_ids_q = ids_tensor([self.batch_size, self.seq_length + 1], self.vocab_size)
112
113
114
            perm_mask = torch.zeros(
                self.batch_size, self.seq_length + 1, self.seq_length + 1, dtype=torch.float, device=torch_device
            )
115
            perm_mask[:, :, -1] = 1.0  # Previous tokens don't see last token
116
117
118
            target_mapping = torch.zeros(
                self.batch_size, 1, self.seq_length + 1, dtype=torch.float, device=torch_device
            )
119
120
            target_mapping[:, 0, -1] = 1.0  # predict last token

thomwolf's avatar
thomwolf committed
121
            sequence_labels = None
thomwolf's avatar
thomwolf committed
122
            lm_labels = None
thomwolf's avatar
thomwolf committed
123
            is_impossible_labels = None
124
            token_labels = None
thomwolf's avatar
thomwolf committed
125
            if self.use_labels:
thomwolf's avatar
thomwolf committed
126
                lm_labels = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
thomwolf's avatar
thomwolf committed
127
128
                sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
                is_impossible_labels = ids_tensor([self.batch_size], 2).float()
129
                token_labels = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
thomwolf's avatar
thomwolf committed
130
131

            config = XLNetConfig(
thomwolf's avatar
thomwolf committed
132
                vocab_size=self.vocab_size,
thomwolf's avatar
thomwolf committed
133
134
                d_model=self.hidden_size,
                n_head=self.num_attention_heads,
thomwolf's avatar
thomwolf committed
135
                d_inner=self.d_inner,
thomwolf's avatar
thomwolf committed
136
                n_layer=self.num_hidden_layers,
thomwolf's avatar
thomwolf committed
137
138
139
140
141
                untie_r=self.untie_r,
                mem_len=self.mem_len,
                clamp_len=self.clamp_len,
                same_length=self.same_length,
                reuse_len=self.reuse_len,
142
                bi_data=self.bi_data,
thomwolf's avatar
thomwolf committed
143
                initializer_range=self.initializer_range,
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
                num_labels=self.type_sequence_label_size,
            )

            return (
                config,
                input_ids_1,
                input_ids_2,
                input_ids_q,
                perm_mask,
                input_mask,
                target_mapping,
                segment_ids,
                lm_labels,
                sequence_labels,
                is_impossible_labels,
                token_labels,
            )
thomwolf's avatar
thomwolf committed
161
162
163
164
165

        def set_seed(self):
            random.seed(self.seed)
            torch.manual_seed(self.seed)

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
        def create_and_check_xlnet_base_model(
            self,
            config,
            input_ids_1,
            input_ids_2,
            input_ids_q,
            perm_mask,
            input_mask,
            target_mapping,
            segment_ids,
            lm_labels,
            sequence_labels,
            is_impossible_labels,
            token_labels,
        ):
thomwolf's avatar
thomwolf committed
181
            model = XLNetModel(config)
182
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
183
184
            model.eval()

thomwolf's avatar
thomwolf committed
185
186
            _, _ = model(input_ids_1, input_mask=input_mask)
            _, _ = model(input_ids_1, attention_mask=input_mask)
thomwolf's avatar
thomwolf committed
187
188
189
190
191
192
193
194
            _, _ = model(input_ids_1, token_type_ids=segment_ids)
            outputs, mems_1 = model(input_ids_1)

            result = {
                "mems_1": mems_1,
                "outputs": outputs,
            }

thomwolf's avatar
thomwolf committed
195
196
            config.mem_len = 0
            model = XLNetModel(config)
197
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
198
            model.eval()
199
200
201
            no_mems_outputs = model(input_ids_1)
            self.parent.assertEqual(len(no_mems_outputs), 1)

thomwolf's avatar
thomwolf committed
202
            self.parent.assertListEqual(
203
204
                list(result["outputs"].size()), [self.batch_size, self.seq_length, self.hidden_size]
            )
thomwolf's avatar
thomwolf committed
205
206
            self.parent.assertListEqual(
                list(list(mem.size()) for mem in result["mems_1"]),
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
                [[self.seq_length, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
            )

        def create_and_check_xlnet_base_model_with_att_output(
            self,
            config,
            input_ids_1,
            input_ids_2,
            input_ids_q,
            perm_mask,
            input_mask,
            target_mapping,
            segment_ids,
            lm_labels,
            sequence_labels,
            is_impossible_labels,
            token_labels,
        ):
225
            model = XLNetModel(config)
226
            model.to(torch_device)
227
228
229
230
231
232
233
234
235
            model.eval()

            _, _, attentions = model(input_ids_1, target_mapping=target_mapping)

            self.parent.assertEqual(len(attentions), config.n_layer)
            self.parent.assertIsInstance(attentions[0], tuple)
            self.parent.assertEqual(len(attentions[0]), 2)
            self.parent.assertTrue(attentions[0][0].shape, attentions[0][0].shape)

236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
        def create_and_check_xlnet_lm_head(
            self,
            config,
            input_ids_1,
            input_ids_2,
            input_ids_q,
            perm_mask,
            input_mask,
            target_mapping,
            segment_ids,
            lm_labels,
            sequence_labels,
            is_impossible_labels,
            token_labels,
        ):
thomwolf's avatar
thomwolf committed
251
            model = XLNetLMHeadModel(config)
252
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
253
254
            model.eval()

thomwolf's avatar
thomwolf committed
255
            loss_1, all_logits_1, mems_1 = model(input_ids_1, token_type_ids=segment_ids, labels=lm_labels)
thomwolf's avatar
thomwolf committed
256

257
258
259
            loss_2, all_logits_2, mems_2 = model(
                input_ids_2, token_type_ids=segment_ids, labels=lm_labels, mems=mems_1
            )
260

261
            logits, _ = model(input_ids_q, perm_mask=perm_mask, target_mapping=target_mapping)
thomwolf's avatar
thomwolf committed
262

thomwolf's avatar
thomwolf committed
263
            result = {
thomwolf's avatar
thomwolf committed
264
                "loss_1": loss_1,
thomwolf's avatar
thomwolf committed
265
                "mems_1": mems_1,
266
                "all_logits_1": all_logits_1,
thomwolf's avatar
thomwolf committed
267
                "loss_2": loss_2,
thomwolf's avatar
thomwolf committed
268
                "mems_2": mems_2,
269
                "all_logits_2": all_logits_2,
thomwolf's avatar
thomwolf committed
270
271
            }

272
            self.parent.assertListEqual(list(result["loss_1"].size()), [])
thomwolf's avatar
thomwolf committed
273
            self.parent.assertListEqual(
274
275
                list(result["all_logits_1"].size()), [self.batch_size, self.seq_length, self.vocab_size]
            )
thomwolf's avatar
thomwolf committed
276
            self.parent.assertListEqual(
thomwolf's avatar
thomwolf committed
277
                list(list(mem.size()) for mem in result["mems_1"]),
278
279
                [[self.seq_length, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
            )
thomwolf's avatar
thomwolf committed
280

281
            self.parent.assertListEqual(list(result["loss_2"].size()), [])
thomwolf's avatar
thomwolf committed
282
            self.parent.assertListEqual(
283
284
                list(result["all_logits_2"].size()), [self.batch_size, self.seq_length, self.vocab_size]
            )
thomwolf's avatar
thomwolf committed
285
            self.parent.assertListEqual(
thomwolf's avatar
thomwolf committed
286
                list(list(mem.size()) for mem in result["mems_2"]),
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
                [[self.mem_len, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
            )

        def create_and_check_xlnet_qa(
            self,
            config,
            input_ids_1,
            input_ids_2,
            input_ids_q,
            perm_mask,
            input_mask,
            target_mapping,
            segment_ids,
            lm_labels,
            sequence_labels,
            is_impossible_labels,
            token_labels,
        ):
thomwolf's avatar
thomwolf committed
305
            model = XLNetForQuestionAnswering(config)
306
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
307
308
309
310
311
            model.eval()

            outputs = model(input_ids_1)
            start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits, mems = outputs

312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
            outputs = model(
                input_ids_1,
                start_positions=sequence_labels,
                end_positions=sequence_labels,
                cls_index=sequence_labels,
                is_impossible=is_impossible_labels,
                p_mask=input_mask,
            )

            outputs = model(
                input_ids_1,
                start_positions=sequence_labels,
                end_positions=sequence_labels,
                cls_index=sequence_labels,
                is_impossible=is_impossible_labels,
            )
thomwolf's avatar
thomwolf committed
328

329
            total_loss, mems = outputs
thomwolf's avatar
thomwolf committed
330

331
            outputs = model(input_ids_1, start_positions=sequence_labels, end_positions=sequence_labels)
thomwolf's avatar
thomwolf committed
332

333
            total_loss, mems = outputs
thomwolf's avatar
thomwolf committed
334
335
336

            result = {
                "loss": total_loss,
337
338
339
340
                "start_top_log_probs": start_top_log_probs,
                "start_top_index": start_top_index,
                "end_top_log_probs": end_top_log_probs,
                "end_top_index": end_top_index,
thomwolf's avatar
thomwolf committed
341
342
343
344
                "cls_logits": cls_logits,
                "mems": mems,
            }

345
            self.parent.assertListEqual(list(result["loss"].size()), [])
thomwolf's avatar
thomwolf committed
346
            self.parent.assertListEqual(
347
348
                list(result["start_top_log_probs"].size()), [self.batch_size, model.config.start_n_top]
            )
thomwolf's avatar
thomwolf committed
349
            self.parent.assertListEqual(
350
351
                list(result["start_top_index"].size()), [self.batch_size, model.config.start_n_top]
            )
352
353
            self.parent.assertListEqual(
                list(result["end_top_log_probs"].size()),
354
355
                [self.batch_size, model.config.start_n_top * model.config.end_n_top],
            )
356
357
            self.parent.assertListEqual(
                list(result["end_top_index"].size()),
358
359
360
                [self.batch_size, model.config.start_n_top * model.config.end_n_top],
            )
            self.parent.assertListEqual(list(result["cls_logits"].size()), [self.batch_size])
thomwolf's avatar
thomwolf committed
361
362
            self.parent.assertListEqual(
                list(list(mem.size()) for mem in result["mems"]),
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
                [[self.seq_length, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
            )

        def create_and_check_xlnet_token_classif(
            self,
            config,
            input_ids_1,
            input_ids_2,
            input_ids_q,
            perm_mask,
            input_mask,
            target_mapping,
            segment_ids,
            lm_labels,
            sequence_labels,
            is_impossible_labels,
            token_labels,
        ):
381
            model = XLNetForTokenClassification(config)
382
            model.to(torch_device)
383
384
385
386
387
388
389
390
391
392
393
            model.eval()

            logits, mems_1 = model(input_ids_1)
            loss, logits, mems_1 = model(input_ids_1, labels=token_labels)

            result = {
                "loss": loss,
                "mems_1": mems_1,
                "logits": logits,
            }

394
            self.parent.assertListEqual(list(result["loss"].size()), [])
395
            self.parent.assertListEqual(
396
397
                list(result["logits"].size()), [self.batch_size, self.seq_length, self.type_sequence_label_size]
            )
398
399
            self.parent.assertListEqual(
                list(list(mem.size()) for mem in result["mems_1"]),
400
401
                [[self.seq_length, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
            )
402

403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
        def create_and_check_xlnet_sequence_classif(
            self,
            config,
            input_ids_1,
            input_ids_2,
            input_ids_q,
            perm_mask,
            input_mask,
            target_mapping,
            segment_ids,
            lm_labels,
            sequence_labels,
            is_impossible_labels,
            token_labels,
        ):
thomwolf's avatar
thomwolf committed
418
            model = XLNetForSequenceClassification(config)
419
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
420
421
422
423
424
425
426
427
428
429
430
            model.eval()

            logits, mems_1 = model(input_ids_1)
            loss, logits, mems_1 = model(input_ids_1, labels=sequence_labels)

            result = {
                "loss": loss,
                "mems_1": mems_1,
                "logits": logits,
            }

431
            self.parent.assertListEqual(list(result["loss"].size()), [])
thomwolf's avatar
thomwolf committed
432
            self.parent.assertListEqual(
433
434
                list(result["logits"].size()), [self.batch_size, self.type_sequence_label_size]
            )
thomwolf's avatar
thomwolf committed
435
436
            self.parent.assertListEqual(
                list(list(mem.size()) for mem in result["mems_1"]),
437
438
                [[self.seq_length, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
            )
thomwolf's avatar
thomwolf committed
439

thomwolf's avatar
thomwolf committed
440
441
        def prepare_config_and_inputs_for_common(self):
            config_and_inputs = self.prepare_config_and_inputs()
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
            (
                config,
                input_ids_1,
                input_ids_2,
                input_ids_q,
                perm_mask,
                input_mask,
                target_mapping,
                segment_ids,
                lm_labels,
                sequence_labels,
                is_impossible_labels,
                token_labels,
            ) = config_and_inputs
            inputs_dict = {"input_ids": input_ids_1}
thomwolf's avatar
thomwolf committed
457
458
459
460
461
            return config, inputs_dict

    def setUp(self):
        self.model_tester = XLNetModelTest.XLNetModelTester(self)
        self.config_tester = ConfigTester(self, config_class=XLNetConfig, d_inner=37)
thomwolf's avatar
thomwolf committed
462

thomwolf's avatar
thomwolf committed
463
    def test_config(self):
thomwolf's avatar
thomwolf committed
464
465
466
467
468
469
470
        self.config_tester.run_common_tests()

    def test_xlnet_base_model(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlnet_base_model(*config_and_inputs)

471
472
473
474
475
476
    def test_xlnet_base_model_with_att_output(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        config_and_inputs[0].output_attentions = True
        self.model_tester.create_and_check_xlnet_base_model_with_att_output(*config_and_inputs)

thomwolf's avatar
thomwolf committed
477
478
479
    def test_xlnet_lm_head(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
480
        self.model_tester.create_and_check_xlnet_lm_head(*config_and_inputs)
thomwolf's avatar
thomwolf committed
481
482
483
484
485
486

    def test_xlnet_sequence_classif(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlnet_sequence_classif(*config_and_inputs)

487
488
489
490
491
    def test_xlnet_token_classif(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlnet_token_classif(*config_and_inputs)

thomwolf's avatar
thomwolf committed
492
493
494
495
    def test_xlnet_qa(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlnet_qa(*config_and_inputs)
thomwolf's avatar
thomwolf committed
496

497
    @slow
thomwolf's avatar
thomwolf committed
498
    def test_model_from_pretrained(self):
499
        for model_name in list(XLNET_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
500
            model = XLNetModel.from_pretrained(model_name, cache_dir=CACHE_DIR)
thomwolf's avatar
thomwolf committed
501
            self.assertIsNotNone(model)