converting_tensorflow_models.rst 5.2 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
Converting Tensorflow Checkpoints
2
3
================================================

thomwolf's avatar
thomwolf committed
4
A command-line interface is provided to convert original Bert/GPT/GPT-2/Transformer-XL/XLNet/XLM checkpoints in models than be loaded using the ``from_pretrained`` methods of the library.
5

6
7
8
9
10
11
.. note::
    Since 2.3.0 the conversion script is now part of the transformers CLI (**transformers-cli**)
    available in any transformers >= 2.3.0 installation.

    The documentation below reflects the **transformers-cli convert** command format.

12
13
14
BERT
^^^^

15
You can convert any TensorFlow checkpoint for BERT (in particular `the pre-trained models released by Google <https://github.com/google-research/bert#pre-trained-models>`_\ ) in a PyTorch save file by using the `convert_tf_checkpoint_to_pytorch.py <https://github.com/huggingface/transformers/blob/master/transformers/convert_tf_checkpoint_to_pytorch.py>`_ script.
16

17
This CLI takes as input a TensorFlow checkpoint (three files starting with ``bert_model.ckpt``\ ) and the associated configuration file (\ ``bert_config.json``\ ), and creates a PyTorch model for this configuration, loads the weights from the TensorFlow checkpoint in the PyTorch model and saves the resulting model in a standard PyTorch save file that can be imported using ``torch.load()`` (see examples in `run_bert_extract_features.py <https://github.com/huggingface/pytorch-pretrained-BERT/tree/master/examples/run_bert_extract_features.py>`_\ , `run_bert_classifier.py <https://github.com/huggingface/pytorch-pretrained-BERT/tree/master/examples/run_bert_classifier.py>`_ and `run_bert_squad.py <https://github.com/huggingface/pytorch-pretrained-BERT/tree/master/examples/run_bert_squad.py>`_\ ).
18
19
20
21
22
23
24
25
26
27
28

You only need to run this conversion script **once** to get a PyTorch model. You can then disregard the TensorFlow checkpoint (the three files starting with ``bert_model.ckpt``\ ) but be sure to keep the configuration file (\ ``bert_config.json``\ ) and the vocabulary file (\ ``vocab.txt``\ ) as these are needed for the PyTorch model too.

To run this specific conversion script you will need to have TensorFlow and PyTorch installed (\ ``pip install tensorflow``\ ). The rest of the repository only requires PyTorch.

Here is an example of the conversion process for a pre-trained ``BERT-Base Uncased`` model:

.. code-block:: shell

   export BERT_BASE_DIR=/path/to/bert/uncased_L-12_H-768_A-12

29
30
31
32
   transformers-cli convert --model_type bert \
     --tf_checkpoint $BERT_BASE_DIR/bert_model.ckpt \
     --config $BERT_BASE_DIR/bert_config.json \
     --pytorch_dump_output $BERT_BASE_DIR/pytorch_model.bin
33
34
35
36
37
38
39
40
41
42
43
44

You can download Google's pre-trained models for the conversion `here <https://github.com/google-research/bert#pre-trained-models>`__.

OpenAI GPT
^^^^^^^^^^

Here is an example of the conversion process for a pre-trained OpenAI GPT model, assuming that your NumPy checkpoint save as the same format than OpenAI pretrained model (see `here <https://github.com/openai/finetune-transformer-lm>`__\ )

.. code-block:: shell

   export OPENAI_GPT_CHECKPOINT_FOLDER_PATH=/path/to/openai/pretrained/numpy/weights

45
46
47
48
49
50
   transformers-cli convert --model_type gpt \
     --tf_checkpoint $OPENAI_GPT_CHECKPOINT_FOLDER_PATH \
     --pytorch_dump_output $PYTORCH_DUMP_OUTPUT \
     [--config OPENAI_GPT_CONFIG] \
     [--finetuning_task_name OPENAI_GPT_FINETUNED_TASK] \

51

thomwolf's avatar
thomwolf committed
52
53
54
55
56
57
58
59
60
OpenAI GPT-2
^^^^^^^^^^^^

Here is an example of the conversion process for a pre-trained OpenAI GPT-2 model (see `here <https://github.com/openai/gpt-2>`__\ )

.. code-block:: shell

   export OPENAI_GPT2_CHECKPOINT_PATH=/path/to/gpt2/pretrained/weights

61
62
63
64
65
   transformers-cli convert --model_type gpt2 \
     --tf_checkpoint $OPENAI_GPT2_CHECKPOINT_PATH \
     --pytorch_dump_output $PYTORCH_DUMP_OUTPUT \
     [--config OPENAI_GPT2_CONFIG] \
     [--finetuning_task_name OPENAI_GPT2_FINETUNED_TASK]
thomwolf's avatar
thomwolf committed
66

67
68
69
70
71
72
73
74
75
Transformer-XL
^^^^^^^^^^^^^^

Here is an example of the conversion process for a pre-trained Transformer-XL model (see `here <https://github.com/kimiyoung/transformer-xl/tree/master/tf#obtain-and-evaluate-pretrained-sota-models>`__\ )

.. code-block:: shell

   export TRANSFO_XL_CHECKPOINT_FOLDER_PATH=/path/to/transfo/xl/checkpoint

76
77
78
79
80
   transformers-cli convert --model_type transfo_xl \
     --tf_checkpoint $TRANSFO_XL_CHECKPOINT_FOLDER_PATH \
     --pytorch_dump_output $PYTORCH_DUMP_OUTPUT \
     [--config TRANSFO_XL_CONFIG] \
     [--finetuning_task_name TRANSFO_XL_FINETUNED_TASK]
81
82
83
84
85


XLNet
^^^^^

86
Here is an example of the conversion process for a pre-trained XLNet model:
87
88
89
90
91
92

.. code-block:: shell

   export TRANSFO_XL_CHECKPOINT_PATH=/path/to/xlnet/checkpoint
   export TRANSFO_XL_CONFIG_PATH=/path/to/xlnet/config

93
94
95
96
97
   transformers-cli convert --model_type xlnet \
     --tf_checkpoint $TRANSFO_XL_CHECKPOINT_PATH \
     --config $TRANSFO_XL_CONFIG_PATH \
     --pytorch_dump_output $PYTORCH_DUMP_OUTPUT \
     [--finetuning_task_name XLNET_FINETUNED_TASK] \
thomwolf's avatar
thomwolf committed
98
99
100
101
102
103
104
105
106
107
108


XLM
^^^

Here is an example of the conversion process for a pre-trained XLM model:

.. code-block:: shell

   export XLM_CHECKPOINT_PATH=/path/to/xlm/checkpoint

109
110
111
112
113
   transformers-cli convert --model_type xlm \
     --tf_checkpoint $XLM_CHECKPOINT_PATH \
     --pytorch_dump_output $PYTORCH_DUMP_OUTPUT
    [--config XML_CONFIG] \
    [--finetuning_task_name XML_FINETUNED_TASK]