modeling.py 62.1 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
3
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
thomwolf's avatar
thomwolf committed
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch BERT model."""

thomwolf's avatar
thomwolf committed
18
from __future__ import absolute_import, division, print_function, unicode_literals
thomwolf's avatar
thomwolf committed
19
20
21
22

import copy
import json
import logging
thomwolf's avatar
thomwolf committed
23
24
25
import math
import os
import shutil
thomwolf's avatar
thomwolf committed
26
27
import tarfile
import tempfile
thomwolf's avatar
thomwolf committed
28
29
import sys
from io import open
thomwolf's avatar
thomwolf committed
30
31
32
33
34

import torch
from torch import nn
from torch.nn import CrossEntropyLoss

35
from .file_utils import cached_path, WEIGHTS_NAME, CONFIG_NAME
thomwolf's avatar
thomwolf committed
36
37
38
39
40
41
42

logger = logging.getLogger(__name__)

PRETRAINED_MODEL_ARCHIVE_MAP = {
    'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased.tar.gz",
    'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased.tar.gz",
    'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased.tar.gz",
thomwolf's avatar
thomwolf committed
43
44
45
    'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased.tar.gz",
    'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased.tar.gz",
    'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased.tar.gz",
thomwolf's avatar
thomwolf committed
46
47
    'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese.tar.gz",
}
48
BERT_CONFIG_NAME = 'bert_config.json'
49
TF_WEIGHTS_NAME = 'model.ckpt'
thomwolf's avatar
thomwolf committed
50

51
52
53
def load_tf_weights_in_bert(model, tf_checkpoint_path):
    """ Load tf checkpoints in a pytorch model
    """
54
55
56
57
    try:
        import re
        import numpy as np
        import tensorflow as tf
thomwolf's avatar
thomwolf committed
58
    except ImportError:
59
60
61
        print("Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see "
            "https://www.tensorflow.org/install/ for installation instructions.")
        raise
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
    tf_path = os.path.abspath(tf_checkpoint_path)
    print("Converting TensorFlow checkpoint from {}".format(tf_path))
    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
    names = []
    arrays = []
    for name, shape in init_vars:
        print("Loading TF weight {} with shape {}".format(name, shape))
        array = tf.train.load_variable(tf_path, name)
        names.append(name)
        arrays.append(array)

    for name, array in zip(names, arrays):
        name = name.split('/')
        # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
        # which are not required for using pretrained model
78
        if any(n in ["adam_v", "adam_m", "global_step"] for n in name):
79
80
81
82
83
84
85
86
87
88
89
90
91
92
            print("Skipping {}".format("/".join(name)))
            continue
        pointer = model
        for m_name in name:
            if re.fullmatch(r'[A-Za-z]+_\d+', m_name):
                l = re.split(r'_(\d+)', m_name)
            else:
                l = [m_name]
            if l[0] == 'kernel' or l[0] == 'gamma':
                pointer = getattr(pointer, 'weight')
            elif l[0] == 'output_bias' or l[0] == 'beta':
                pointer = getattr(pointer, 'bias')
            elif l[0] == 'output_weights':
                pointer = getattr(pointer, 'weight')
thomwolf's avatar
thomwolf committed
93
94
            elif l[0] == 'squad':
                pointer = getattr(pointer, 'classifier')
95
            else:
96
97
98
99
100
                try:
                    pointer = getattr(pointer, l[0])
                except AttributeError:
                    print("Skipping {}".format("/".join(name)))
                    continue
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
            if len(l) >= 2:
                num = int(l[1])
                pointer = pointer[num]
        if m_name[-11:] == '_embeddings':
            pointer = getattr(pointer, 'weight')
        elif m_name == 'kernel':
            array = np.transpose(array)
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
        print("Initialize PyTorch weight {}".format(name))
        pointer.data = torch.from_numpy(array)
    return model


thomwolf's avatar
thomwolf committed
118
119
120
121
def gelu(x):
    """Implementation of the gelu activation function.
        For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
        0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
122
        Also see https://arxiv.org/abs/1606.08415
thomwolf's avatar
thomwolf committed
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
    """
    return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))


def swish(x):
    return x * torch.sigmoid(x)


ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish}


class BertConfig(object):
    """Configuration class to store the configuration of a `BertModel`.
    """
    def __init__(self,
                 vocab_size_or_config_json_file,
                 hidden_size=768,
                 num_hidden_layers=12,
                 num_attention_heads=12,
                 intermediate_size=3072,
                 hidden_act="gelu",
                 hidden_dropout_prob=0.1,
                 attention_probs_dropout_prob=0.1,
                 max_position_embeddings=512,
                 type_vocab_size=2,
                 initializer_range=0.02):
        """Constructs BertConfig.

        Args:
            vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `BertModel`.
            hidden_size: Size of the encoder layers and the pooler layer.
            num_hidden_layers: Number of hidden layers in the Transformer encoder.
            num_attention_heads: Number of attention heads for each attention layer in
                the Transformer encoder.
            intermediate_size: The size of the "intermediate" (i.e., feed-forward)
                layer in the Transformer encoder.
            hidden_act: The non-linear activation function (function or string) in the
                encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
            hidden_dropout_prob: The dropout probabilitiy for all fully connected
                layers in the embeddings, encoder, and pooler.
            attention_probs_dropout_prob: The dropout ratio for the attention
                probabilities.
            max_position_embeddings: The maximum sequence length that this model might
                ever be used with. Typically set this to something large just in case
                (e.g., 512 or 1024 or 2048).
            type_vocab_size: The vocabulary size of the `token_type_ids` passed into
                `BertModel`.
            initializer_range: The sttdev of the truncated_normal_initializer for
                initializing all weight matrices.
        """
thomwolf's avatar
thomwolf committed
173
174
        if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
                        and isinstance(vocab_size_or_config_json_file, unicode)):
175
            with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader:
thomwolf's avatar
thomwolf committed
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
            self.vocab_size = vocab_size_or_config_json_file
            self.hidden_size = hidden_size
            self.num_hidden_layers = num_hidden_layers
            self.num_attention_heads = num_attention_heads
            self.hidden_act = hidden_act
            self.intermediate_size = intermediate_size
            self.hidden_dropout_prob = hidden_dropout_prob
            self.attention_probs_dropout_prob = attention_probs_dropout_prob
            self.max_position_embeddings = max_position_embeddings
            self.type_vocab_size = type_vocab_size
            self.initializer_range = initializer_range
        else:
            raise ValueError("First argument must be either a vocabulary size (int)"
                             "or the path to a pretrained model config file (str)")

    @classmethod
    def from_dict(cls, json_object):
        """Constructs a `BertConfig` from a Python dictionary of parameters."""
        config = BertConfig(vocab_size_or_config_json_file=-1)
        for key, value in json_object.items():
            config.__dict__[key] = value
        return config

    @classmethod
    def from_json_file(cls, json_file):
        """Constructs a `BertConfig` from a json file of parameters."""
206
        with open(json_file, "r", encoding='utf-8') as reader:
thomwolf's avatar
thomwolf committed
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
            text = reader.read()
        return cls.from_dict(json.loads(text))

    def __repr__(self):
        return str(self.to_json_string())

    def to_dict(self):
        """Serializes this instance to a Python dictionary."""
        output = copy.deepcopy(self.__dict__)
        return output

    def to_json_string(self):
        """Serializes this instance to a JSON string."""
        return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"

222
223
224
225
226
    def to_json_file(self, json_file_path):
        """ Save this instance to a json file."""
        with open(json_file_path, "w", encoding='utf-8') as writer:
            writer.write(self.to_json_string())

227
228
229
try:
    from apex.normalization.fused_layer_norm import FusedLayerNorm as BertLayerNorm
except ImportError:
230
    logger.info("Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex .")
231
232
233
234
235
236
237
238
239
240
241
242
243
244
    class BertLayerNorm(nn.Module):
        def __init__(self, hidden_size, eps=1e-12):
            """Construct a layernorm module in the TF style (epsilon inside the square root).
            """
            super(BertLayerNorm, self).__init__()
            self.weight = nn.Parameter(torch.ones(hidden_size))
            self.bias = nn.Parameter(torch.zeros(hidden_size))
            self.variance_epsilon = eps

        def forward(self, x):
            u = x.mean(-1, keepdim=True)
            s = (x - u).pow(2).mean(-1, keepdim=True)
            x = (x - u) / torch.sqrt(s + self.variance_epsilon)
            return self.weight * x + self.bias
thomwolf's avatar
thomwolf committed
245
246
247
248
249
250

class BertEmbeddings(nn.Module):
    """Construct the embeddings from word, position and token_type embeddings.
    """
    def __init__(self, config):
        super(BertEmbeddings, self).__init__()
251
        self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=0)
252
253
        self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
        self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
thomwolf's avatar
thomwolf committed
254
255
256

        # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
        # any TensorFlow checkpoint file
257
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12)
thomwolf's avatar
thomwolf committed
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, input_ids, token_type_ids=None):
        seq_length = input_ids.size(1)
        position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device)
        position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
        if token_type_ids is None:
            token_type_ids = torch.zeros_like(input_ids)

        words_embeddings = self.word_embeddings(input_ids)
        position_embeddings = self.position_embeddings(position_ids)
        token_type_embeddings = self.token_type_embeddings(token_type_ids)

        embeddings = words_embeddings + position_embeddings + token_type_embeddings
        embeddings = self.LayerNorm(embeddings)
        embeddings = self.dropout(embeddings)
        return embeddings


class BertSelfAttention(nn.Module):
thomwolf's avatar
thomwolf committed
278
    def __init__(self, config, output_attentions=False):
thomwolf's avatar
thomwolf committed
279
280
281
282
283
        super(BertSelfAttention, self).__init__()
        if config.hidden_size % config.num_attention_heads != 0:
            raise ValueError(
                "The hidden size (%d) is not a multiple of the number of attention "
                "heads (%d)" % (config.hidden_size, config.num_attention_heads))
thomwolf's avatar
thomwolf committed
284
        self.output_attentions = output_attentions
thomwolf's avatar
thomwolf committed
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
        self.num_attention_heads = config.num_attention_heads
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        self.query = nn.Linear(config.hidden_size, self.all_head_size)
        self.key = nn.Linear(config.hidden_size, self.all_head_size)
        self.value = nn.Linear(config.hidden_size, self.all_head_size)

        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)

    def transpose_for_scores(self, x):
        new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
        x = x.view(*new_x_shape)
        return x.permute(0, 2, 1, 3)

    def forward(self, hidden_states, attention_mask):
        mixed_query_layer = self.query(hidden_states)
        mixed_key_layer = self.key(hidden_states)
        mixed_value_layer = self.value(hidden_states)

        query_layer = self.transpose_for_scores(mixed_query_layer)
        key_layer = self.transpose_for_scores(mixed_key_layer)
        value_layer = self.transpose_for_scores(mixed_value_layer)

        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
        attention_scores = attention_scores / math.sqrt(self.attention_head_size)
        # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
        attention_scores = attention_scores + attention_mask

        # Normalize the attention scores to probabilities.
        attention_probs = nn.Softmax(dim=-1)(attention_scores)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(attention_probs)

        context_layer = torch.matmul(attention_probs, value_layer)
        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
        context_layer = context_layer.view(*new_context_layer_shape)
thomwolf's avatar
thomwolf committed
326
327
        if self.output_attentions:
            return attention_probs, context_layer
328
        return context_layer
thomwolf's avatar
thomwolf committed
329
330
331
332
333
334


class BertSelfOutput(nn.Module):
    def __init__(self, config):
        super(BertSelfOutput, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
335
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12)
thomwolf's avatar
thomwolf committed
336
337
338
339
340
341
342
343
344
345
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


class BertAttention(nn.Module):
thomwolf's avatar
thomwolf committed
346
    def __init__(self, config, output_attentions=False):
thomwolf's avatar
thomwolf committed
347
        super(BertAttention, self).__init__()
thomwolf's avatar
thomwolf committed
348
349
        self.output_attentions = output_attentions
        self.self = BertSelfAttention(config, output_attentions=output_attentions)
thomwolf's avatar
thomwolf committed
350
351
352
353
        self.output = BertSelfOutput(config)

    def forward(self, input_tensor, attention_mask):
        self_output = self.self(input_tensor, attention_mask)
thomwolf's avatar
thomwolf committed
354
355
        if self.output_attentions:
            attentions, self_output = self_output
thomwolf's avatar
thomwolf committed
356
        attention_output = self.output(self_output, input_tensor)
thomwolf's avatar
thomwolf committed
357
358
        if self.output_attentions:
            return attentions, attention_output
thomwolf's avatar
thomwolf committed
359
360
361
362
363
364
365
        return attention_output


class BertIntermediate(nn.Module):
    def __init__(self, config):
        super(BertIntermediate, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
thomwolf's avatar
thomwolf committed
366
367
368
369
        if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)):
            self.intermediate_act_fn = ACT2FN[config.hidden_act]
        else:
            self.intermediate_act_fn = config.hidden_act
thomwolf's avatar
thomwolf committed
370
371
372
373
374
375
376
377
378
379
380

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)
        return hidden_states


class BertOutput(nn.Module):
    def __init__(self, config):
        super(BertOutput, self).__init__()
        self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
381
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12)
thomwolf's avatar
thomwolf committed
382
383
384
385
386
387
388
389
390
391
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


class BertLayer(nn.Module):
thomwolf's avatar
thomwolf committed
392
    def __init__(self, config, output_attentions=False):
thomwolf's avatar
thomwolf committed
393
        super(BertLayer, self).__init__()
thomwolf's avatar
thomwolf committed
394
395
        self.output_attentions = output_attentions
        self.attention = BertAttention(config, output_attentions=output_attentions)
thomwolf's avatar
thomwolf committed
396
397
398
399
400
        self.intermediate = BertIntermediate(config)
        self.output = BertOutput(config)

    def forward(self, hidden_states, attention_mask):
        attention_output = self.attention(hidden_states, attention_mask)
thomwolf's avatar
thomwolf committed
401
402
        if self.output_attentions:
            attentions, attention_output = attention_output
thomwolf's avatar
thomwolf committed
403
404
        intermediate_output = self.intermediate(attention_output)
        layer_output = self.output(intermediate_output, attention_output)
thomwolf's avatar
thomwolf committed
405
406
        if self.output_attentions:
            return attentions, layer_output
thomwolf's avatar
thomwolf committed
407
408
409
410
        return layer_output


class BertEncoder(nn.Module):
thomwolf's avatar
thomwolf committed
411
    def __init__(self, config, output_attentions=False):
thomwolf's avatar
thomwolf committed
412
        super(BertEncoder, self).__init__()
thomwolf's avatar
thomwolf committed
413
414
        self.output_attentions = output_attentions
        layer = BertLayer(config, output_attentions=output_attentions)
415
        self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.num_hidden_layers)])
thomwolf's avatar
thomwolf committed
416
417
418

    def forward(self, hidden_states, attention_mask, output_all_encoded_layers=True):
        all_encoder_layers = []
thomwolf's avatar
thomwolf committed
419
        all_attentions = []
thomwolf's avatar
thomwolf committed
420
421
        for layer_module in self.layer:
            hidden_states = layer_module(hidden_states, attention_mask)
thomwolf's avatar
thomwolf committed
422
423
424
            if self.output_attentions:
                attentions, hidden_states = hidden_states
                all_attentions.append(attentions)
thomwolf's avatar
thomwolf committed
425
426
427
428
            if output_all_encoded_layers:
                all_encoder_layers.append(hidden_states)
        if not output_all_encoded_layers:
            all_encoder_layers.append(hidden_states)
thomwolf's avatar
thomwolf committed
429
430
        if self.output_attentions:
            return all_attentions, all_encoder_layers
thomwolf's avatar
thomwolf committed
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
        return all_encoder_layers


class BertPooler(nn.Module):
    def __init__(self, config):
        super(BertPooler, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.activation = nn.Tanh()

    def forward(self, hidden_states):
        # We "pool" the model by simply taking the hidden state corresponding
        # to the first token.
        first_token_tensor = hidden_states[:, 0]
        pooled_output = self.dense(first_token_tensor)
        pooled_output = self.activation(pooled_output)
        return pooled_output


class BertPredictionHeadTransform(nn.Module):
    def __init__(self, config):
        super(BertPredictionHeadTransform, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
thomwolf's avatar
thomwolf committed
453
454
455
456
        if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)):
            self.transform_act_fn = ACT2FN[config.hidden_act]
        else:
            self.transform_act_fn = config.hidden_act
457
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12)
thomwolf's avatar
thomwolf committed
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.transform_act_fn(hidden_states)
        hidden_states = self.LayerNorm(hidden_states)
        return hidden_states


class BertLMPredictionHead(nn.Module):
    def __init__(self, config, bert_model_embedding_weights):
        super(BertLMPredictionHead, self).__init__()
        self.transform = BertPredictionHeadTransform(config)

        # The output weights are the same as the input embeddings, but there is
        # an output-only bias for each token.
        self.decoder = nn.Linear(bert_model_embedding_weights.size(1),
                                 bert_model_embedding_weights.size(0),
                                 bias=False)
        self.decoder.weight = bert_model_embedding_weights
        self.bias = nn.Parameter(torch.zeros(bert_model_embedding_weights.size(0)))

    def forward(self, hidden_states):
        hidden_states = self.transform(hidden_states)
        hidden_states = self.decoder(hidden_states) + self.bias
        return hidden_states


class BertOnlyMLMHead(nn.Module):
    def __init__(self, config, bert_model_embedding_weights):
        super(BertOnlyMLMHead, self).__init__()
        self.predictions = BertLMPredictionHead(config, bert_model_embedding_weights)

    def forward(self, sequence_output):
        prediction_scores = self.predictions(sequence_output)
        return prediction_scores


class BertOnlyNSPHead(nn.Module):
    def __init__(self, config):
        super(BertOnlyNSPHead, self).__init__()
        self.seq_relationship = nn.Linear(config.hidden_size, 2)

    def forward(self, pooled_output):
        seq_relationship_score = self.seq_relationship(pooled_output)
        return seq_relationship_score


class BertPreTrainingHeads(nn.Module):
    def __init__(self, config, bert_model_embedding_weights):
        super(BertPreTrainingHeads, self).__init__()
        self.predictions = BertLMPredictionHead(config, bert_model_embedding_weights)
        self.seq_relationship = nn.Linear(config.hidden_size, 2)

    def forward(self, sequence_output, pooled_output):
        prediction_scores = self.predictions(sequence_output)
        seq_relationship_score = self.seq_relationship(pooled_output)
        return prediction_scores, seq_relationship_score


thomwolf's avatar
thomwolf committed
517
class BertPreTrainedModel(nn.Module):
thomwolf's avatar
thomwolf committed
518
519
520
521
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
    def __init__(self, config, *inputs, **kwargs):
thomwolf's avatar
thomwolf committed
522
        super(BertPreTrainedModel, self).__init__()
thomwolf's avatar
thomwolf committed
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
        if not isinstance(config, BertConfig):
            raise ValueError(
                "Parameter config in `{}(config)` should be an instance of class `BertConfig`. "
                "To create a model from a Google pretrained model use "
                "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
                    self.__class__.__name__, self.__class__.__name__
                ))
        self.config = config

    def init_bert_weights(self, module):
        """ Initialize the weights.
        """
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, BertLayerNorm):
Li Dong's avatar
Li Dong committed
540
541
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
thomwolf's avatar
thomwolf committed
542
543
544
545
        if isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()

    @classmethod
546
    def from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs):
thomwolf's avatar
thomwolf committed
547
        """
thomwolf's avatar
thomwolf committed
548
        Instantiate a BertPreTrainedModel from a pre-trained model file or a pytorch state dict.
thomwolf's avatar
thomwolf committed
549
        Download and cache the pre-trained model file if needed.
550

thomwolf's avatar
thomwolf committed
551
        Params:
thomwolf's avatar
thomwolf committed
552
            pretrained_model_name_or_path: either:
thomwolf's avatar
thomwolf committed
553
554
555
556
                - a str with the name of a pre-trained model to load selected in the list of:
                    . `bert-base-uncased`
                    . `bert-large-uncased`
                    . `bert-base-cased`
557
558
559
                    . `bert-large-cased`
                    . `bert-base-multilingual-uncased`
                    . `bert-base-multilingual-cased`
thomwolf's avatar
thomwolf committed
560
561
562
563
                    . `bert-base-chinese`
                - a path or url to a pretrained model archive containing:
                    . `bert_config.json` a configuration file for the model
                    . `pytorch_model.bin` a PyTorch dump of a BertForPreTraining instance
564
565
566
567
                - a path or url to a pretrained model archive containing:
                    . `bert_config.json` a configuration file for the model
                    . `model.chkpt` a TensorFlow checkpoint
            from_tf: should we load the weights from a locally saved TensorFlow checkpoint
568
569
            cache_dir: an optional path to a folder in which the pre-trained models will be cached.
            state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of Google pre-trained models
thomwolf's avatar
thomwolf committed
570
571
572
            *inputs, **kwargs: additional input for the specific Bert class
                (ex: num_labels for BertForSequenceClassification)
        """
573
574
575
576
577
578
579
        state_dict = kwargs.get('state_dict', None)
        kwargs.pop('state_dict', None)
        cache_dir = kwargs.get('cache_dir', None)
        kwargs.pop('cache_dir', None)
        from_tf = kwargs.get('from_tf', False)
        kwargs.pop('from_tf', None)

thomwolf's avatar
thomwolf committed
580
581
        if pretrained_model_name_or_path in PRETRAINED_MODEL_ARCHIVE_MAP:
            archive_file = PRETRAINED_MODEL_ARCHIVE_MAP[pretrained_model_name_or_path]
thomwolf's avatar
thomwolf committed
582
        else:
thomwolf's avatar
thomwolf committed
583
            archive_file = pretrained_model_name_or_path
thomwolf's avatar
thomwolf committed
584
585
        # redirect to the cache, if necessary
        try:
586
            resolved_archive_file = cached_path(archive_file, cache_dir=cache_dir)
thomwolf's avatar
thomwolf committed
587
        except EnvironmentError:
thomwolf's avatar
thomwolf committed
588
589
590
591
            logger.error(
                "Model name '{}' was not found in model name list ({}). "
                "We assumed '{}' was a path or url but couldn't find any file "
                "associated to this path or url.".format(
thomwolf's avatar
thomwolf committed
592
                    pretrained_model_name_or_path,
thomwolf's avatar
thomwolf committed
593
                    ', '.join(PRETRAINED_MODEL_ARCHIVE_MAP.keys()),
594
                    archive_file))
thomwolf's avatar
thomwolf committed
595
596
597
598
599
600
601
            return None
        if resolved_archive_file == archive_file:
            logger.info("loading archive file {}".format(archive_file))
        else:
            logger.info("loading archive file {} from cache at {}".format(
                archive_file, resolved_archive_file))
        tempdir = None
602
        if os.path.isdir(resolved_archive_file) or from_tf:
thomwolf's avatar
thomwolf committed
603
604
605
606
607
608
609
610
611
612
613
            serialization_dir = resolved_archive_file
        else:
            # Extract archive to temp dir
            tempdir = tempfile.mkdtemp()
            logger.info("extracting archive file {} to temp dir {}".format(
                resolved_archive_file, tempdir))
            with tarfile.open(resolved_archive_file, 'r:gz') as archive:
                archive.extractall(tempdir)
            serialization_dir = tempdir
        # Load config
        config_file = os.path.join(serialization_dir, CONFIG_NAME)
614
615
616
        if not os.path.exists(config_file):
            # Backward compatibility with old naming format
            config_file = os.path.join(serialization_dir, BERT_CONFIG_NAME)
thomwolf's avatar
thomwolf committed
617
618
619
620
        config = BertConfig.from_json_file(config_file)
        logger.info("Model config {}".format(config))
        # Instantiate model.
        model = cls(config, *inputs, **kwargs)
621
        if state_dict is None and not from_tf:
622
            weights_path = os.path.join(serialization_dir, WEIGHTS_NAME)
thomwolf's avatar
thomwolf committed
623
            state_dict = torch.load(weights_path, map_location='cpu')
624
625
626
627
628
629
630
631
        if tempdir:
            # Clean up temp dir
            shutil.rmtree(tempdir)
        if from_tf:
            # Directly load from a TensorFlow checkpoint
            weights_path = os.path.join(serialization_dir, TF_WEIGHTS_NAME)
            return load_tf_weights_in_bert(model, weights_path)
        # Load from a PyTorch state_dict
632
633
634
635
636
        old_keys = []
        new_keys = []
        for key in state_dict.keys():
            new_key = None
            if 'gamma' in key:
thomwolf's avatar
thomwolf committed
637
                new_key = key.replace('gamma', 'weight')
638
            if 'beta' in key:
thomwolf's avatar
thomwolf committed
639
                new_key = key.replace('beta', 'bias')
640
641
642
643
            if new_key:
                old_keys.append(key)
                new_keys.append(new_key)
        for old_key, new_key in zip(old_keys, new_keys):
thomwolf's avatar
thomwolf committed
644
            state_dict[new_key] = state_dict.pop(old_key)
645

thomwolf's avatar
thomwolf committed
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
        missing_keys = []
        unexpected_keys = []
        error_msgs = []
        # copy state_dict so _load_from_state_dict can modify it
        metadata = getattr(state_dict, '_metadata', None)
        state_dict = state_dict.copy()
        if metadata is not None:
            state_dict._metadata = metadata

        def load(module, prefix=''):
            local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
            module._load_from_state_dict(
                state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs)
            for name, child in module._modules.items():
                if child is not None:
                    load(child, prefix + name + '.')
thomwolf's avatar
thomwolf committed
662
663
664
        start_prefix = ''
        if not hasattr(model, 'bert') and any(s.startswith('bert.') for s in state_dict.keys()):
            start_prefix = 'bert.'
thomwolf's avatar
update  
thomwolf committed
665
        load(model, prefix=start_prefix)
thomwolf's avatar
thomwolf committed
666
667
668
669
670
671
        if len(missing_keys) > 0:
            logger.info("Weights of {} not initialized from pretrained model: {}".format(
                model.__class__.__name__, missing_keys))
        if len(unexpected_keys) > 0:
            logger.info("Weights from pretrained model not used in {}: {}".format(
                model.__class__.__name__, unexpected_keys))
thomwolf's avatar
thomwolf committed
672
673
        if len(error_msgs) > 0:
            raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
thomwolf's avatar
thomwolf committed
674
                               model.__class__.__name__, "\n\t".join(error_msgs)))
thomwolf's avatar
thomwolf committed
675
676
677
        return model


thomwolf's avatar
thomwolf committed
678
class BertModel(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
    """BERT model ("Bidirectional Embedding Representations from a Transformer").

    Params:
        config: a BertConfig class instance with the configuration to build a new model

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
            with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
            `extract_features.py`, `run_classifier.py` and `run_squad.py`)
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see BERT paper for more details).
        `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
        `output_all_encoded_layers`: boolean which controls the content of the `encoded_layers` output as described below. Default: `True`.

    Outputs: Tuple of (encoded_layers, pooled_output)
        `encoded_layers`: controled by `output_all_encoded_layers` argument:
            - `output_all_encoded_layers=True`: outputs a list of the full sequences of encoded-hidden-states at the end
                of each attention block (i.e. 12 full sequences for BERT-base, 24 for BERT-large), each
                encoded-hidden-state is a torch.FloatTensor of size [batch_size, sequence_length, hidden_size],
            - `output_all_encoded_layers=False`: outputs only the full sequence of hidden-states corresponding
703
                to the last attention block of shape [batch_size, sequence_length, hidden_size],
thomwolf's avatar
thomwolf committed
704
705
        `pooled_output`: a torch.FloatTensor of size [batch_size, hidden_size] which is the output of a
            classifier pretrained on top of the hidden state associated to the first character of the
thomwolf's avatar
thomwolf committed
706
            input (`CLS`) to train on the Next-Sentence task (see BERT's paper).
thomwolf's avatar
thomwolf committed
707
708
709
710
711
712

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
thomwolf's avatar
thomwolf committed
713
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
thomwolf's avatar
thomwolf committed
714

thomwolf's avatar
thomwolf committed
715
716
    config = modeling.BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
        num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
thomwolf's avatar
thomwolf committed
717
718
719
720
721

    model = modeling.BertModel(config=config)
    all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
    ```
    """
thomwolf's avatar
thomwolf committed
722
    def __init__(self, config, output_attentions=False):
thomwolf's avatar
thomwolf committed
723
        super(BertModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
724
        self.output_attentions = output_attentions
thomwolf's avatar
thomwolf committed
725
        self.embeddings = BertEmbeddings(config)
thomwolf's avatar
thomwolf committed
726
        self.encoder = BertEncoder(config, output_attentions=output_attentions)
thomwolf's avatar
thomwolf committed
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
        self.pooler = BertPooler(config)
        self.apply(self.init_bert_weights)

    def forward(self, input_ids, token_type_ids=None, attention_mask=None, output_all_encoded_layers=True):
        if attention_mask is None:
            attention_mask = torch.ones_like(input_ids)
        if token_type_ids is None:
            token_type_ids = torch.zeros_like(input_ids)

        # We create a 3D attention mask from a 2D tensor mask.
        # Sizes are [batch_size, 1, 1, to_seq_length]
        # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
        # this attention mask is more simple than the triangular masking of causal attention
        # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
        extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)

        # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
        # masked positions, this operation will create a tensor which is 0.0 for
        # positions we want to attend and -10000.0 for masked positions.
        # Since we are adding it to the raw scores before the softmax, this is
        # effectively the same as removing these entirely.
        extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility
        extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0

        embedding_output = self.embeddings(input_ids, token_type_ids)
        encoded_layers = self.encoder(embedding_output,
                                      extended_attention_mask,
                                      output_all_encoded_layers=output_all_encoded_layers)
thomwolf's avatar
thomwolf committed
755
756
        if self.output_attentions:
            all_attentions, encoded_layers = encoded_layers
thomwolf's avatar
thomwolf committed
757
758
759
760
        sequence_output = encoded_layers[-1]
        pooled_output = self.pooler(sequence_output)
        if not output_all_encoded_layers:
            encoded_layers = encoded_layers[-1]
thomwolf's avatar
thomwolf committed
761
762
        if self.output_attentions:
            return all_attentions, encoded_layers, pooled_output
thomwolf's avatar
thomwolf committed
763
764
765
        return encoded_layers, pooled_output


thomwolf's avatar
thomwolf committed
766
class BertForPreTraining(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
    """BERT model with pre-training heads.
    This module comprises the BERT model followed by the two pre-training heads:
        - the masked language modeling head, and
        - the next sentence classification head.

    Params:
        config: a BertConfig class instance with the configuration to build a new model.

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
            with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
            `extract_features.py`, `run_classifier.py` and `run_squad.py`)
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see BERT paper for more details).
        `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
786
        `masked_lm_labels`: optional masked language modeling labels: torch.LongTensor of shape [batch_size, sequence_length]
thomwolf's avatar
thomwolf committed
787
788
            with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
            is only computed for the labels set in [0, ..., vocab_size]
789
        `next_sentence_label`: optional next sentence classification loss: torch.LongTensor of shape [batch_size]
thomwolf's avatar
thomwolf committed
790
791
792
793
794
795
796
797
798
            with indices selected in [0, 1].
            0 => next sentence is the continuation, 1 => next sentence is a random sentence.

    Outputs:
        if `masked_lm_labels` and `next_sentence_label` are not `None`:
            Outputs the total_loss which is the sum of the masked language modeling loss and the next
            sentence classification loss.
        if `masked_lm_labels` or `next_sentence_label` is `None`:
            Outputs a tuple comprising
799
800
            - the masked language modeling logits of shape [batch_size, sequence_length, vocab_size], and
            - the next sentence classification logits of shape [batch_size, 2].
thomwolf's avatar
thomwolf committed
801
802
803
804
805
806

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
thomwolf's avatar
thomwolf committed
807
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
thomwolf's avatar
thomwolf committed
808

thomwolf's avatar
thomwolf committed
809
810
    config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
        num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
thomwolf's avatar
thomwolf committed
811
812
813
814
815

    model = BertForPreTraining(config)
    masked_lm_logits_scores, seq_relationship_logits = model(input_ids, token_type_ids, input_mask)
    ```
    """
816
    def __init__(self, config, output_attentions=False):
thomwolf's avatar
thomwolf committed
817
        super(BertForPreTraining, self).__init__(config)
818
819
        self.output_attentions = output_attentions
        self.bert = BertModel(config, output_attentions=output_attentions)
thomwolf's avatar
thomwolf committed
820
821
822
823
        self.cls = BertPreTrainingHeads(config, self.bert.embeddings.word_embeddings.weight)
        self.apply(self.init_bert_weights)

    def forward(self, input_ids, token_type_ids=None, attention_mask=None, masked_lm_labels=None, next_sentence_label=None):
824
        outputs = self.bert(input_ids, token_type_ids, attention_mask,
thomwolf's avatar
thomwolf committed
825
                                                   output_all_encoded_layers=False)
826
827
828
829
        if self.output_attentions:
            all_attentions, sequence_output, pooled_output = outputs
        else:
            sequence_output, pooled_output = outputs
thomwolf's avatar
thomwolf committed
830
831
832
833
        prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)

        if masked_lm_labels is not None and next_sentence_label is not None:
            loss_fct = CrossEntropyLoss(ignore_index=-1)
834
            masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1))
835
            next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
thomwolf's avatar
thomwolf committed
836
837
            total_loss = masked_lm_loss + next_sentence_loss
            return total_loss
838
839
840
        elif self.output_attentions:
            return all_attentions, prediction_scores, seq_relationship_score
        return prediction_scores, seq_relationship_score
thomwolf's avatar
thomwolf committed
841
842


thomwolf's avatar
thomwolf committed
843
class BertForMaskedLM(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
    """BERT model with the masked language modeling head.
    This module comprises the BERT model followed by the masked language modeling head.

    Params:
        config: a BertConfig class instance with the configuration to build a new model.

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
            with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
            `extract_features.py`, `run_classifier.py` and `run_squad.py`)
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see BERT paper for more details).
        `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
        `masked_lm_labels`: masked language modeling labels: torch.LongTensor of shape [batch_size, sequence_length]
            with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
            is only computed for the labels set in [0, ..., vocab_size]

    Outputs:
wlhgtc's avatar
wlhgtc committed
866
        if `masked_lm_labels` is  not `None`:
thomwolf's avatar
thomwolf committed
867
868
            Outputs the masked language modeling loss.
        if `masked_lm_labels` is `None`:
869
            Outputs the masked language modeling logits of shape [batch_size, sequence_length, vocab_size].
thomwolf's avatar
thomwolf committed
870
871
872
873
874
875

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
thomwolf's avatar
thomwolf committed
876
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
thomwolf's avatar
thomwolf committed
877

thomwolf's avatar
thomwolf committed
878
879
    config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
        num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
thomwolf's avatar
thomwolf committed
880
881
882
883
884

    model = BertForMaskedLM(config)
    masked_lm_logits_scores = model(input_ids, token_type_ids, input_mask)
    ```
    """
885
    def __init__(self, config, output_attentions=False):
thomwolf's avatar
thomwolf committed
886
        super(BertForMaskedLM, self).__init__(config)
887
888
        self.output_attentions = output_attentions
        self.bert = BertModel(config, output_attentions=output_attentions)
thomwolf's avatar
thomwolf committed
889
890
891
892
        self.cls = BertOnlyMLMHead(config, self.bert.embeddings.word_embeddings.weight)
        self.apply(self.init_bert_weights)

    def forward(self, input_ids, token_type_ids=None, attention_mask=None, masked_lm_labels=None):
893
        outputs = self.bert(input_ids, token_type_ids, attention_mask,
thomwolf's avatar
thomwolf committed
894
                                       output_all_encoded_layers=False)
895
896
897
898
        if self.output_attentions:
            all_attentions, sequence_output, _ = outputs
        else:
            sequence_output, _ = outputs
thomwolf's avatar
thomwolf committed
899
900
901
902
        prediction_scores = self.cls(sequence_output)

        if masked_lm_labels is not None:
            loss_fct = CrossEntropyLoss(ignore_index=-1)
903
            masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1))
thomwolf's avatar
thomwolf committed
904
            return masked_lm_loss
905
906
907
        elif self.output_attentions:
            return all_attentions, prediction_scores
        return prediction_scores
thomwolf's avatar
thomwolf committed
908
909


thomwolf's avatar
thomwolf committed
910
class BertForNextSentencePrediction(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
    """BERT model with next sentence prediction head.
    This module comprises the BERT model followed by the next sentence classification head.

    Params:
        config: a BertConfig class instance with the configuration to build a new model.

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
            with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
            `extract_features.py`, `run_classifier.py` and `run_squad.py`)
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see BERT paper for more details).
        `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
        `next_sentence_label`: next sentence classification loss: torch.LongTensor of shape [batch_size]
            with indices selected in [0, 1].
            0 => next sentence is the continuation, 1 => next sentence is a random sentence.

    Outputs:
        if `next_sentence_label` is not `None`:
            Outputs the total_loss which is the sum of the masked language modeling loss and the next
            sentence classification loss.
        if `next_sentence_label` is `None`:
937
            Outputs the next sentence classification logits of shape [batch_size, 2].
thomwolf's avatar
thomwolf committed
938
939
940
941
942
943

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
thomwolf's avatar
thomwolf committed
944
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
thomwolf's avatar
thomwolf committed
945

thomwolf's avatar
thomwolf committed
946
947
    config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
        num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
thomwolf's avatar
thomwolf committed
948
949
950
951
952

    model = BertForNextSentencePrediction(config)
    seq_relationship_logits = model(input_ids, token_type_ids, input_mask)
    ```
    """
953
    def __init__(self, config, output_attentions=False):
thomwolf's avatar
thomwolf committed
954
        super(BertForNextSentencePrediction, self).__init__(config)
955
956
        self.output_attentions = output_attentions
        self.bert = BertModel(config, output_attentions=output_attentions)
thomwolf's avatar
thomwolf committed
957
958
959
960
        self.cls = BertOnlyNSPHead(config)
        self.apply(self.init_bert_weights)

    def forward(self, input_ids, token_type_ids=None, attention_mask=None, next_sentence_label=None):
961
        outputs = self.bert(input_ids, token_type_ids, attention_mask,
thomwolf's avatar
thomwolf committed
962
                                     output_all_encoded_layers=False)
963
964
965
966
967
        if self.output_attentions:
            all_attentions, _, pooled_output = outputs
        else:
            _, pooled_output = outputs
        seq_relationship_score = self.cls(pooled_output)
thomwolf's avatar
thomwolf committed
968
969
970

        if next_sentence_label is not None:
            loss_fct = CrossEntropyLoss(ignore_index=-1)
971
            next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
thomwolf's avatar
thomwolf committed
972
            return next_sentence_loss
973
974
975
        elif self.output_attentions:
            return all_attentions, seq_relationship_score
        return seq_relationship_score
thomwolf's avatar
thomwolf committed
976
977


thomwolf's avatar
thomwolf committed
978
class BertForSequenceClassification(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
979
980
981
982
983
984
985
986
987
988
    """BERT model for classification.
    This module is composed of the BERT model with a linear layer on top of
    the pooled output.

    Params:
        `config`: a BertConfig class instance with the configuration to build a new model.
        `num_labels`: the number of classes for the classifier. Default = 2.

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
989
            with the word token indices in the vocabulary. Items in the batch should begin with the special "CLS" token. (see the tokens preprocessing logic in the scripts
thomwolf's avatar
thomwolf committed
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
            `extract_features.py`, `run_classifier.py` and `run_squad.py`)
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see BERT paper for more details).
        `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
        `labels`: labels for the classification output: torch.LongTensor of shape [batch_size]
            with indices selected in [0, ..., num_labels].

    Outputs:
        if `labels` is not `None`:
            Outputs the CrossEntropy classification loss of the output with the labels.
        if `labels` is `None`:
1005
            Outputs the classification logits of shape [batch_size, num_labels].
thomwolf's avatar
thomwolf committed
1006
1007
1008
1009
1010
1011

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
thomwolf's avatar
thomwolf committed
1012
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
thomwolf's avatar
thomwolf committed
1013

thomwolf's avatar
thomwolf committed
1014
1015
    config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
        num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
thomwolf's avatar
thomwolf committed
1016
1017
1018
1019
1020
1021
1022

    num_labels = 2

    model = BertForSequenceClassification(config, num_labels)
    logits = model(input_ids, token_type_ids, input_mask)
    ```
    """
1023
    def __init__(self, config, num_labels, output_attentions=False):
thomwolf's avatar
thomwolf committed
1024
        super(BertForSequenceClassification, self).__init__(config)
1025
        self.output_attentions = output_attentions
1026
        self.num_labels = num_labels
1027
        self.bert = BertModel(config, output_attentions=output_attentions)
thomwolf's avatar
thomwolf committed
1028
1029
1030
1031
1032
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, num_labels)
        self.apply(self.init_bert_weights)

    def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None):
1033
1034
1035
1036
1037
        outputs = self.bert(input_ids, token_type_ids, attention_mask, output_all_encoded_layers=False)
        if self.output_attentions:
            all_attentions, _, pooled_output = outputs
        else:
            _, pooled_output = outputs
thomwolf's avatar
thomwolf committed
1038
1039
1040
1041
1042
        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)

        if labels is not None:
            loss_fct = CrossEntropyLoss()
1043
            loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1044
            return loss
1045
1046
1047
        elif self.output_attentions:
            return all_attentions, logits
        return logits
1048
1049


thomwolf's avatar
thomwolf committed
1050
class BertForMultipleChoice(BertPreTrainedModel):
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
    """BERT model for multiple choice tasks.
    This module is composed of the BERT model with a linear layer on top of
    the pooled output.

    Params:
        `config`: a BertConfig class instance with the configuration to build a new model.
        `num_choices`: the number of classes for the classifier. Default = 2.

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, num_choices, sequence_length]
            with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
            `extract_features.py`, `run_classifier.py` and `run_squad.py`)
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, num_choices, sequence_length]
            with the token types indices selected in [0, 1]. Type 0 corresponds to a `sentence A`
            and type 1 corresponds to a `sentence B` token (see BERT paper for more details).
        `attention_mask`: an optional torch.LongTensor of shape [batch_size, num_choices, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
        `labels`: labels for the classification output: torch.LongTensor of shape [batch_size]
            with indices selected in [0, ..., num_choices].

    Outputs:
        if `labels` is not `None`:
            Outputs the CrossEntropy classification loss of the output with the labels.
        if `labels` is `None`:
            Outputs the classification logits of shape [batch_size, num_labels].

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[[31, 51, 99], [15, 5, 0]], [[12, 16, 42], [14, 28, 57]]])
    input_mask = torch.LongTensor([[[1, 1, 1], [1, 1, 0]],[[1,1,0], [1, 0, 0]]])
    token_type_ids = torch.LongTensor([[[0, 0, 1], [0, 1, 0]],[[0, 1, 1], [0, 0, 1]]])
    config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
        num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

    num_choices = 2

    model = BertForMultipleChoice(config, num_choices)
    logits = model(input_ids, token_type_ids, input_mask)
    ```
    """
1094
    def __init__(self, config, num_choices, output_attentions=False):
1095
        super(BertForMultipleChoice, self).__init__(config)
1096
        self.output_attentions = output_attentions
1097
        self.num_choices = num_choices
1098
        self.bert = BertModel(config, output_attentions=output_attentions)
1099
1100
1101
1102
1103
1104
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, 1)
        self.apply(self.init_bert_weights)

    def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None):
        flat_input_ids = input_ids.view(-1, input_ids.size(-1))
1105
1106
        flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
        flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
1107
1108
1109
1110
1111
        outputs = self.bert(flat_input_ids, flat_token_type_ids, flat_attention_mask, output_all_encoded_layers=False)
        if self.output_attentions:
            all_attentions, _, pooled_output = outputs
        else:
            _, pooled_output = outputs
1112
1113
1114
1115
1116
1117
1118
1119
        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)
        reshaped_logits = logits.view(-1, self.num_choices)

        if labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(reshaped_logits, labels)
            return loss
1120
1121
1122
        elif self.output_attentions:
            return all_attentions, reshaped_logits
        return reshaped_logits
1123
1124


thomwolf's avatar
thomwolf committed
1125
class BertForTokenClassification(BertPreTrainedModel):
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
    """BERT model for token-level classification.
    This module is composed of the BERT model with a linear layer on top of
    the full hidden state of the last layer.

    Params:
        `config`: a BertConfig class instance with the configuration to build a new model.
        `num_labels`: the number of classes for the classifier. Default = 2.

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
            with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
            `extract_features.py`, `run_classifier.py` and `run_squad.py`)
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see BERT paper for more details).
        `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
thomwolf's avatar
thomwolf committed
1145
        `labels`: labels for the classification output: torch.LongTensor of shape [batch_size, sequence_length]
1146
1147
1148
1149
1150
1151
            with indices selected in [0, ..., num_labels].

    Outputs:
        if `labels` is not `None`:
            Outputs the CrossEntropy classification loss of the output with the labels.
        if `labels` is `None`:
1152
            Outputs the classification logits of shape [batch_size, sequence_length, num_labels].
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

    config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
        num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

    num_labels = 2

    model = BertForTokenClassification(config, num_labels)
    logits = model(input_ids, token_type_ids, input_mask)
    ```
    """
1170
    def __init__(self, config, num_labels, output_attentions=False):
1171
        super(BertForTokenClassification, self).__init__(config)
1172
        self.output_attentions = output_attentions
1173
        self.num_labels = num_labels
1174
        self.bert = BertModel(config, output_attentions=output_attentions)
1175
1176
1177
1178
1179
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, num_labels)
        self.apply(self.init_bert_weights)

    def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None):
1180
1181
1182
1183
1184
        outputs = self.bert(input_ids, token_type_ids, attention_mask, output_all_encoded_layers=False)
        if self.output_attentions:
            all_attentions, sequence_output, _ = outputs
        else:
            sequence_output, _ = outputs
1185
1186
        sequence_output = self.dropout(sequence_output)
        logits = self.classifier(sequence_output)
1187
1188
1189

        if labels is not None:
            loss_fct = CrossEntropyLoss()
1190
1191
1192
1193
1194
1195
1196
1197
            # Only keep active parts of the loss
            if attention_mask is not None:
                active_loss = attention_mask.view(-1) == 1
                active_logits = logits.view(-1, self.num_labels)[active_loss]
                active_labels = labels.view(-1)[active_loss]
                loss = loss_fct(active_logits, active_labels)
            else:
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1198
            return loss
1199
1200
1201
        elif self.output_attentions:
            return all_attentions, logits
        return logits
thomwolf's avatar
thomwolf committed
1202
1203


thomwolf's avatar
thomwolf committed
1204
class BertForQuestionAnswering(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
1205
1206
1207
1208
1209
    """BERT model for Question Answering (span extraction).
    This module is composed of the BERT model with a linear layer on top of
    the sequence output that computes start_logits and end_logits

    Params:
1210
        `config`: a BertConfig class instance with the configuration to build a new model.
thomwolf's avatar
thomwolf committed
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
            with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
            `extract_features.py`, `run_classifier.py` and `run_squad.py`)
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see BERT paper for more details).
        `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
        `start_positions`: position of the first token for the labeled span: torch.LongTensor of shape [batch_size].
            Positions are clamped to the length of the sequence and position outside of the sequence are not taken
            into account for computing the loss.
        `end_positions`: position of the last token for the labeled span: torch.LongTensor of shape [batch_size].
            Positions are clamped to the length of the sequence and position outside of the sequence are not taken
            into account for computing the loss.

    Outputs:
        if `start_positions` and `end_positions` are not `None`:
            Outputs the total_loss which is the sum of the CrossEntropy loss for the start and end token positions.
        if `start_positions` or `end_positions` is `None`:
            Outputs a tuple of start_logits, end_logits which are the logits respectively for the start and end
1235
            position tokens of shape [batch_size, sequence_length].
thomwolf's avatar
thomwolf committed
1236
1237
1238
1239
1240
1241

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
thomwolf's avatar
thomwolf committed
1242
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
thomwolf's avatar
thomwolf committed
1243

thomwolf's avatar
thomwolf committed
1244
1245
    config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
        num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
thomwolf's avatar
thomwolf committed
1246
1247
1248
1249
1250

    model = BertForQuestionAnswering(config)
    start_logits, end_logits = model(input_ids, token_type_ids, input_mask)
    ```
    """
1251
    def __init__(self, config, output_attentions=False):
thomwolf's avatar
thomwolf committed
1252
        super(BertForQuestionAnswering, self).__init__(config)
1253
1254
        self.output_attentions = output_attentions
        self.bert = BertModel(config, output_attentions=output_attentions)
thomwolf's avatar
thomwolf committed
1255
1256
1257
1258
        self.qa_outputs = nn.Linear(config.hidden_size, 2)
        self.apply(self.init_bert_weights)

    def forward(self, input_ids, token_type_ids=None, attention_mask=None, start_positions=None, end_positions=None):
1259
1260
1261
1262
1263
        outputs = self.bert(input_ids, token_type_ids, attention_mask, output_all_encoded_layers=False)
        if self.output_attentions:
            all_attentions, sequence_output, _ = outputs
        else:
            sequence_output, _ = outputs
thomwolf's avatar
thomwolf committed
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
        logits = self.qa_outputs(sequence_output)
        start_logits, end_logits = logits.split(1, dim=-1)
        start_logits = start_logits.squeeze(-1)
        end_logits = end_logits.squeeze(-1)

        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.size()) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.size()) > 1:
                end_positions = end_positions.squeeze(-1)
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.size(1)
            start_positions.clamp_(0, ignored_index)
            end_positions.clamp_(0, ignored_index)

            loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2
            return total_loss
1285
1286
1287
        elif self.output_attentions:
            return all_attentions, start_logits, end_logits
        return start_logits, end_logits