test_finetune_trainer.py 8.48 KB
Newer Older
Suraj Patil's avatar
Suraj Patil committed
1
2
3
4
import os
import sys
from unittest.mock import patch

5
from transformers import BertTokenizer, EncoderDecoderModel
6
from transformers.file_utils import is_datasets_available
7
8
9
10
11
12
13
14
from transformers.testing_utils import (
    TestCasePlus,
    execute_subprocess_async,
    get_gpu_count,
    require_torch_multi_gpu,
    require_torch_non_multi_gpu,
    slow,
)
Sylvain Gugger's avatar
Sylvain Gugger committed
15
16
from transformers.trainer_callback import TrainerState
from transformers.trainer_utils import set_seed
Suraj Patil's avatar
Suraj Patil committed
17

18
19
from .finetune_trainer import Seq2SeqTrainingArguments, main
from .seq2seq_trainer import Seq2SeqTrainer
Suraj Patil's avatar
Suraj Patil committed
20
from .test_seq2seq_examples import MBART_TINY
21

Suraj Patil's avatar
Suraj Patil committed
22

23
set_seed(42)
Suraj Patil's avatar
Suraj Patil committed
24
25
26
MARIAN_MODEL = "sshleifer/student_marian_en_ro_6_1"


27
class TestFinetuneTrainer(TestCasePlus):
28
29
    def finetune_trainer_quick(self, distributed=None):
        output_dir = self.run_trainer(1, "12", MBART_TINY, 1, distributed)
30
31
32
33
        logs = TrainerState.load_from_json(os.path.join(output_dir, "trainer_state.json")).log_history
        eval_metrics = [log for log in logs if "eval_loss" in log.keys()]
        first_step_stats = eval_metrics[0]
        assert "eval_bleu" in first_step_stats
Suraj Patil's avatar
Suraj Patil committed
34

35
36
37
38
39
40
41
42
43
44
45
46
47
    @require_torch_non_multi_gpu
    def test_finetune_trainer_no_dist(self):
        self.finetune_trainer_quick()

    # the following 2 tests verify that the trainer can handle distributed and non-distributed with n_gpu > 1
    @require_torch_multi_gpu
    def test_finetune_trainer_dp(self):
        self.finetune_trainer_quick(distributed=False)

    @require_torch_multi_gpu
    def test_finetune_trainer_ddp(self):
        self.finetune_trainer_quick(distributed=True)

48
49
50
    @slow
    def test_finetune_trainer_slow(self):
        # There is a missing call to __init__process_group somewhere
51
52
53
        output_dir = self.run_trainer(
            eval_steps=2, max_len="128", model_name=MARIAN_MODEL, num_train_epochs=10, distributed=False
        )
Suraj Patil's avatar
Suraj Patil committed
54

55
56
57
58
59
        # Check metrics
        logs = TrainerState.load_from_json(os.path.join(output_dir, "trainer_state.json")).log_history
        eval_metrics = [log for log in logs if "eval_loss" in log.keys()]
        first_step_stats = eval_metrics[0]
        last_step_stats = eval_metrics[-1]
60

61
62
        assert first_step_stats["eval_bleu"] < last_step_stats["eval_bleu"]  # model learned nothing
        assert isinstance(last_step_stats["eval_bleu"], float)
63

64
65
66
67
68
        # test if do_predict saves generations and metrics
        contents = os.listdir(output_dir)
        contents = {os.path.basename(p) for p in contents}
        assert "test_generations.txt" in contents
        assert "test_results.json" in contents
69

70
71
72
73
74
75
76
77
78
79
80
    @slow
    def test_finetune_bert2bert(self):
        if not is_datasets_available():
            return

        import datasets

        bert2bert = EncoderDecoderModel.from_encoder_decoder_pretrained("prajjwal1/bert-tiny", "prajjwal1/bert-tiny")
        tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")

        bert2bert.config.vocab_size = bert2bert.config.encoder.vocab_size
81
        bert2bert.config.eos_token_id = tokenizer.sep_token_id
82
        bert2bert.config.decoder_start_token_id = tokenizer.cls_token_id
83
        bert2bert.config.max_length = 128
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162

        train_dataset = datasets.load_dataset("cnn_dailymail", "3.0.0", split="train[:1%]")
        val_dataset = datasets.load_dataset("cnn_dailymail", "3.0.0", split="validation[:1%]")

        train_dataset = train_dataset.select(range(32))
        val_dataset = val_dataset.select(range(16))

        rouge = datasets.load_metric("rouge")

        batch_size = 4

        def _map_to_encoder_decoder_inputs(batch):
            # Tokenizer will automatically set [BOS] <text> [EOS]
            inputs = tokenizer(batch["article"], padding="max_length", truncation=True, max_length=512)
            outputs = tokenizer(batch["highlights"], padding="max_length", truncation=True, max_length=128)
            batch["input_ids"] = inputs.input_ids
            batch["attention_mask"] = inputs.attention_mask

            batch["decoder_input_ids"] = outputs.input_ids
            batch["labels"] = outputs.input_ids.copy()
            batch["labels"] = [
                [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"]
            ]
            batch["decoder_attention_mask"] = outputs.attention_mask

            assert all([len(x) == 512 for x in inputs.input_ids])
            assert all([len(x) == 128 for x in outputs.input_ids])

            return batch

        def _compute_metrics(pred):
            labels_ids = pred.label_ids
            pred_ids = pred.predictions

            # all unnecessary tokens are removed
            pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
            label_str = tokenizer.batch_decode(labels_ids, skip_special_tokens=True)

            rouge_output = rouge.compute(predictions=pred_str, references=label_str, rouge_types=["rouge2"])[
                "rouge2"
            ].mid

            return {
                "rouge2_precision": round(rouge_output.precision, 4),
                "rouge2_recall": round(rouge_output.recall, 4),
                "rouge2_fmeasure": round(rouge_output.fmeasure, 4),
            }

        # map train dataset
        train_dataset = train_dataset.map(
            _map_to_encoder_decoder_inputs,
            batched=True,
            batch_size=batch_size,
            remove_columns=["article", "highlights"],
        )
        train_dataset.set_format(
            type="torch",
            columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"],
        )

        # same for validation dataset
        val_dataset = val_dataset.map(
            _map_to_encoder_decoder_inputs,
            batched=True,
            batch_size=batch_size,
            remove_columns=["article", "highlights"],
        )
        val_dataset.set_format(
            type="torch",
            columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"],
        )

        output_dir = self.get_auto_remove_tmp_dir()

        training_args = Seq2SeqTrainingArguments(
            output_dir=output_dir,
            per_device_train_batch_size=batch_size,
            per_device_eval_batch_size=batch_size,
            predict_with_generate=True,
Sylvain Gugger's avatar
Sylvain Gugger committed
163
            evaluation_strategy="steps",
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
            do_train=True,
            do_eval=True,
            warmup_steps=0,
            eval_steps=2,
            logging_steps=2,
        )

        # instantiate trainer
        trainer = Seq2SeqTrainer(
            model=bert2bert,
            args=training_args,
            compute_metrics=_compute_metrics,
            train_dataset=train_dataset,
            eval_dataset=val_dataset,
        )

        # start training
        trainer.train()

183
184
185
    def run_trainer(
        self, eval_steps: int, max_len: str, model_name: str, num_train_epochs: int, distributed: bool = False
    ):
186
        data_dir = self.examples_dir / "seq2seq/test_data/wmt_en_ro"
187
        output_dir = self.get_auto_remove_tmp_dir()
188
        args = f"""
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
            --model_name_or_path {model_name}
            --data_dir {data_dir}
            --output_dir {output_dir}
            --overwrite_output_dir
            --n_train 8
            --n_val 8
            --max_source_length {max_len}
            --max_target_length {max_len}
            --val_max_target_length {max_len}
            --do_train
            --do_eval
            --do_predict
            --num_train_epochs {str(num_train_epochs)}
            --per_device_train_batch_size 4
            --per_device_eval_batch_size 4
204
            --learning_rate 3e-3
205
            --warmup_steps 8
Sylvain Gugger's avatar
Sylvain Gugger committed
206
            --evaluation_strategy steps
207
208
209
210
211
212
213
214
215
216
217
218
            --predict_with_generate
            --logging_steps 0
            --save_steps {str(eval_steps)}
            --eval_steps {str(eval_steps)}
            --sortish_sampler
            --label_smoothing 0.1
            --adafactor
            --task translation
            --tgt_lang ro_RO
            --src_lang en_XX
        """.split()
        # --eval_beams  2
219

220
221
        if distributed:
            n_gpu = get_gpu_count()
222
223
224
225
226
227
228
            distributed_args = f"""
                -m torch.distributed.launch
                --nproc_per_node={n_gpu}
                {self.test_file_dir}/finetune_trainer.py
            """.split()
            cmd = [sys.executable] + distributed_args + args
            execute_subprocess_async(cmd, env=self.get_env())
229
        else:
230
            testargs = ["finetune_trainer.py"] + args
231
232
            with patch.object(sys, "argv", testargs):
                main()
233

234
        return output_dir