test_modeling_tf_mt5.py 2.12 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
Patrick von Platen committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow


if is_tf_available():
    import tensorflow as tf

25
    from transformers import AutoTokenizer, TFAutoModelForSeq2SeqLM
Patrick von Platen's avatar
Patrick von Platen committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52


@require_tf
@require_sentencepiece
@require_tokenizers
class TFMT5ModelIntegrationTest(unittest.TestCase):
    @slow
    def test_small_integration_test(self):
        """
        For comparision run:
        >>> import t5  # pip install t5==0.7.1
        >>> from t5.data.sentencepiece_vocabulary import SentencePieceVocabulary

        >>> path_to_mtf_small_mt5_checkpoint = '<fill_in>'
        >>> path_to_mtf_small_mt5_spm_model_path = '<fill_in>'
        >>> t5_model = t5.models.MtfModel(model_dir=path_to_mtf_small_mt5_checkpoint, batch_size=1, tpu=None)
        >>> vocab = SentencePieceVocabulary(path_to_mtf_small_mt5_spm_model_path, extra_ids=100)
        >>> score = t5_model.score(inputs=["Hello there"], targets=["Hi I am"], vocabulary=vocab)
        """

        model = TFAutoModelForSeq2SeqLM.from_pretrained("google/mt5-small")
        tokenizer = AutoTokenizer.from_pretrained("google/mt5-small")

        input_ids = tokenizer("Hello there", return_tensors="tf").input_ids
        labels = tokenizer("Hi I am", return_tensors="tf").input_ids

        loss = model(input_ids, labels=labels).loss
Matt's avatar
Matt committed
53
        mtf_score = -tf.math.reduce_mean(loss).numpy()
Patrick von Platen's avatar
Patrick von Platen committed
54

55
        EXPECTED_SCORE = -21.228168
56
        self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 2e-4)