test_modeling_tf_mt5.py 3.1 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
Patrick von Platen committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow


if is_tf_available():
    import tensorflow as tf

Joao Gante's avatar
Joao Gante committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
    from transformers import AutoTokenizer, T5Tokenizer, TFAutoModelForSeq2SeqLM, TFMT5ForConditionalGeneration


@require_tf
class TFMT5ModelTest(unittest.TestCase):  # no mixin with common tests -> most cases are already covered in the TF T5
    @slow
    def test_resize_embeddings(self):
        model = TFMT5ForConditionalGeneration.from_pretrained("google/mt5-small")
        original_vocab_size = model.get_input_embeddings().weight.shape[0]
        # the vocab size is defined in the model config
        self.assertEqual(original_vocab_size, model.config.vocab_size)

        tokenizer = T5Tokenizer.from_pretrained("google/mt5-small")
        tokenizer.add_special_tokens({"bos_token": "", "eos_token": ""})
        model._resize_token_embeddings(len(tokenizer))
        # the vocab size is now resized to the length of the tokenizer, which is different from the original size
        self.assertEqual(model.get_input_embeddings().weight.shape[0], len(tokenizer))
        self.assertNotEqual(model.get_input_embeddings().weight.shape[0], original_vocab_size)
Patrick von Platen's avatar
Patrick von Platen committed
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69


@require_tf
@require_sentencepiece
@require_tokenizers
class TFMT5ModelIntegrationTest(unittest.TestCase):
    @slow
    def test_small_integration_test(self):
        """
        For comparision run:
        >>> import t5  # pip install t5==0.7.1
        >>> from t5.data.sentencepiece_vocabulary import SentencePieceVocabulary

        >>> path_to_mtf_small_mt5_checkpoint = '<fill_in>'
        >>> path_to_mtf_small_mt5_spm_model_path = '<fill_in>'
        >>> t5_model = t5.models.MtfModel(model_dir=path_to_mtf_small_mt5_checkpoint, batch_size=1, tpu=None)
        >>> vocab = SentencePieceVocabulary(path_to_mtf_small_mt5_spm_model_path, extra_ids=100)
        >>> score = t5_model.score(inputs=["Hello there"], targets=["Hi I am"], vocabulary=vocab)
        """

        model = TFAutoModelForSeq2SeqLM.from_pretrained("google/mt5-small")
        tokenizer = AutoTokenizer.from_pretrained("google/mt5-small")

        input_ids = tokenizer("Hello there", return_tensors="tf").input_ids
        labels = tokenizer("Hi I am", return_tensors="tf").input_ids

        loss = model(input_ids, labels=labels).loss
Matt's avatar
Matt committed
70
        mtf_score = -tf.math.reduce_mean(loss).numpy()
Patrick von Platen's avatar
Patrick von Platen committed
71

Matt's avatar
Matt committed
72
        EXPECTED_SCORE = -21.210594
73
        self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 2e-4)