run_summarization.py 29.5 KB
Newer Older
1
#!/usr/bin/env python
2
# coding=utf-8
3
# Copyright 2021 The HuggingFace Team. All rights reserved.
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for sequence to sequence.
"""
# You can also adapt this script on your own sequence to sequence task. Pointers for this are left as comments.

import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional

27
import datasets
28
import nltk  # Here to have a nice missing dependency error message early on
29
30
31
32
import numpy as np
from datasets import load_dataset, load_metric

import transformers
33
from filelock import FileLock
34
35
36
37
38
39
from transformers import (
    AutoConfig,
    AutoModelForSeq2SeqLM,
    AutoTokenizer,
    DataCollatorForSeq2Seq,
    HfArgumentParser,
40
41
42
43
    MBart50Tokenizer,
    MBart50TokenizerFast,
    MBartTokenizer,
    MBartTokenizerFast,
44
45
46
47
    Seq2SeqTrainer,
    Seq2SeqTrainingArguments,
    set_seed,
)
48
from transformers.file_utils import is_offline_mode
49
from transformers.trainer_utils import get_last_checkpoint
50
from transformers.utils import check_min_version
51
from transformers.utils.versions import require_version
52
53


54
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Sylvain Gugger's avatar
Sylvain Gugger committed
55
check_min_version("4.18.0.dev0")
Sylvain Gugger's avatar
Sylvain Gugger committed
56

57
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/summarization/requirements.txt")
58

59
60
logger = logging.getLogger(__name__)

61
62
try:
    nltk.data.find("tokenizers/punkt")
Stas Bekman's avatar
Stas Bekman committed
63
except (LookupError, OSError):
64
65
66
67
68
69
70
    if is_offline_mode():
        raise LookupError(
            "Offline mode: run this script without TRANSFORMERS_OFFLINE first to download nltk data files"
        )
    with FileLock(".lock") as lock:
        nltk.download("punkt", quiet=True)

71
72
73
# A list of all multilingual tokenizer which require lang attribute.
MULTILINGUAL_TOKENIZERS = [MBartTokenizer, MBartTokenizerFast, MBart50Tokenizer, MBart50TokenizerFast]

74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """

    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
        default=None,
        metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
    )
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
    )
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    use_auth_token: bool = field(
        default=False,
        metadata={
            "help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
            "with private models)."
        },
    )
109
110
111
112
113
114
115
    resize_position_embeddings: Optional[bool] = field(
        default=None,
        metadata={
            "help": "Whether to automatically resize the position embeddings if `max_source_length` exceeds "
            "the model's position embeddings."
        },
    )
116
117
118
119
120
121
122
123


@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

124
125
    lang: str = field(default=None, metadata={"help": "Language id for summarization."})

126
127
128
129
130
131
132
133
134
135
136
137
138
139
    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
    text_column: Optional[str] = field(
        default=None,
        metadata={"help": "The name of the column in the datasets containing the full texts (for summarization)."},
    )
    summary_column: Optional[str] = field(
        default=None,
        metadata={"help": "The name of the column in the datasets containing the summaries (for summarization)."},
    )
140
141
142
    train_file: Optional[str] = field(
        default=None, metadata={"help": "The input training data file (a jsonlines or csv file)."}
    )
143
144
    validation_file: Optional[str] = field(
        default=None,
145
        metadata={
146
            "help": "An optional input evaluation data file to evaluate the metrics (rouge) on "
147
148
149
150
151
152
            "(a jsonlines or csv file)."
        },
    )
    test_file: Optional[str] = field(
        default=None,
        metadata={
153
            "help": "An optional input test data file to evaluate the metrics (rouge) on " "(a jsonlines or csv file)."
154
        },
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
    )
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
    max_source_length: Optional[int] = field(
        default=1024,
        metadata={
            "help": "The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded."
        },
    )
    max_target_length: Optional[int] = field(
        default=128,
        metadata={
            "help": "The maximum total sequence length for target text after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded."
        },
    )
    val_max_target_length: Optional[int] = field(
178
        default=None,
179
180
        metadata={
            "help": "The maximum total sequence length for validation target text after tokenization. Sequences longer "
181
            "than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`."
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
            "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used "
            "during ``evaluate`` and ``predict``."
        },
    )
    pad_to_max_length: bool = field(
        default=False,
        metadata={
            "help": "Whether to pad all samples to model maximum sentence length. "
            "If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
            "efficient on GPU but very bad for TPU."
        },
    )
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": "For debugging purposes or quicker training, truncate the number of training examples to this "
            "value if set."
        },
    )
201
    max_eval_samples: Optional[int] = field(
202
203
        default=None,
        metadata={
204
            "help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
205
206
207
            "value if set."
        },
    )
208
    max_predict_samples: Optional[int] = field(
209
210
        default=None,
        metadata={
211
            "help": "For debugging purposes or quicker training, truncate the number of prediction examples to this "
212
213
214
215
216
217
218
219
220
221
            "value if set."
        },
    )
    num_beams: Optional[int] = field(
        default=None,
        metadata={
            "help": "Number of beams to use for evaluation. This argument will be passed to ``model.generate``, "
            "which is used during ``evaluate`` and ``predict``."
        },
    )
222
223
224
225
226
227
    ignore_pad_token_for_loss: bool = field(
        default=True,
        metadata={
            "help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not."
        },
    )
228
    source_prefix: Optional[str] = field(
229
230
231
232
233
234
235
236
237
238
        default="", metadata={"help": "A prefix to add before every source text (useful for T5 models)."}
    )

    forced_bos_token: Optional[str] = field(
        default=None,
        metadata={
            "help": "The token to force as the first generated token after the decoder_start_token_id."
            "Useful for multilingual models like mBART where the first generated token"
            "needs to be the target language token (Usually it is the target language token)"
        },
239
    )
240
241
242
243
244
245
246
247
248
249
250

    def __post_init__(self):
        if self.dataset_name is None and self.train_file is None and self.validation_file is None:
            raise ValueError("Need either a dataset name or a training/validation file.")
        else:
            if self.train_file is not None:
                extension = self.train_file.split(".")[-1]
                assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
            if self.validation_file is not None:
                extension = self.validation_file.split(".")[-1]
                assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
251
252
        if self.val_max_target_length is None:
            self.val_max_target_length = self.max_target_length
253
254
255


summarization_name_mapping = {
256
257
    "amazon_reviews_multi": ("review_body", "review_title"),
    "big_patent": ("description", "abstract"),
258
    "cnn_dailymail": ("article", "highlights"),
259
260
261
262
263
264
    "orange_sum": ("text", "summary"),
    "pn_summary": ("article", "summary"),
    "psc": ("extract_text", "summary_text"),
    "samsum": ("dialogue", "summary"),
    "thaisum": ("body", "summary"),
    "xglue": ("news_body", "news_title"),
265
    "xsum": ("document", "summary"),
266
    "wiki_summary": ("article", "highlights"),
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
}


def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

283
284
    # Setup logging
    logging.basicConfig(
285
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
286
287
288
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )
289
290
291
292
293
294
    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()
295
296
297
298
299
300
301
302

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )
    logger.info(f"Training/evaluation parameters {training_args}")

303
304
305
306
307
308
309
310
311
312
313
314
    if data_args.source_prefix is None and model_args.model_name_or_path in [
        "t5-small",
        "t5-base",
        "t5-large",
        "t5-3b",
        "t5-11b",
    ]:
        logger.warning(
            "You're running a t5 model but didn't provide a source prefix, which is the expected, e.g. with "
            "`--source_prefix 'summarize: ' `"
        )

315
316
317
318
319
320
321
322
323
    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
324
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
325
326
327
328
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )
329
330
331
332
333
334
335
336

    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
337
338
    # For CSV/JSON files this script will use the first column for the full texts and the second column for the
    # summaries (unless you specify column names for this with the `text_column` and `summary_column` arguments).
339
340
341
342
343
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
344
345
346
        raw_datasets = load_dataset(
            data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir
        )
347
348
349
350
351
352
353
354
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
            extension = data_args.train_file.split(".")[-1]
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
            extension = data_args.validation_file.split(".")[-1]
355
356
357
        if data_args.test_file is not None:
            data_files["test"] = data_args.test_file
            extension = data_args.test_file.split(".")[-1]
358
        raw_datasets = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir)
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    config = AutoConfig.from_pretrained(
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        use_fast=model_args.use_fast_tokenizer,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )
    model = AutoModelForSeq2SeqLM.from_pretrained(
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
        config=config,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )

Suraj Patil's avatar
Suraj Patil committed
389
390
    model.resize_token_embeddings(len(tokenizer))

391
392
393
394
395
396
    if model.config.decoder_start_token_id is None and isinstance(tokenizer, (MBartTokenizer, MBartTokenizerFast)):
        if isinstance(tokenizer, MBartTokenizer):
            model.config.decoder_start_token_id = tokenizer.lang_code_to_id[data_args.lang]
        else:
            model.config.decoder_start_token_id = tokenizer.convert_tokens_to_ids(data_args.lang)

397
398
399
    if model.config.decoder_start_token_id is None:
        raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")

400
401
402
403
404
405
    if (
        hasattr(model.config, "max_position_embeddings")
        and model.config.max_position_embeddings < data_args.max_source_length
    ):
        if model_args.resize_position_embeddings is None:
            logger.warning(
Suraj Patil's avatar
Suraj Patil committed
406
                f"Increasing the model's number of position embedding vectors from {model.config.max_position_embeddings} "
407
408
409
410
411
412
413
414
415
416
417
418
                f"to {data_args.max_source_length}."
            )
            model.resize_position_embeddings(data_args.max_source_length)
        elif model_args.resize_position_embeddings:
            model.resize_position_embeddings(data_args.max_source_length)
        else:
            raise ValueError(
                f"`--max_source_length` is set to {data_args.max_source_length}, but the model only has {model.config.max_position_embeddings}"
                f" position encodings. Consider either reducing `--max_source_length` to {model.config.max_position_embeddings} or to automatically "
                "resize the model's position encodings by passing `--resize_position_embeddings`."
            )

419
    prefix = data_args.source_prefix if data_args.source_prefix is not None else ""
420

421
422
423
    # Preprocessing the datasets.
    # We need to tokenize inputs and targets.
    if training_args.do_train:
424
        column_names = raw_datasets["train"].column_names
425
    elif training_args.do_eval:
426
        column_names = raw_datasets["validation"].column_names
427
    elif training_args.do_predict:
428
        column_names = raw_datasets["test"].column_names
429
430
431
    else:
        logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.")
        return
432

433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
    if isinstance(tokenizer, tuple(MULTILINGUAL_TOKENIZERS)):
        assert (
            data_args.lang is not None
        ), f"{tokenizer.__class__.__name__} is a multilingual tokenizer which requires --lang argument"

        tokenizer.src_lang = data_args.lang
        tokenizer.tgt_lang = data_args.lang

        # For multilingual translation models like mBART-50 and M2M100 we need to force the target language token
        # as the first generated token. We ask the user to explicitly provide this as --forced_bos_token argument.
        forced_bos_token_id = (
            tokenizer.lang_code_to_id[data_args.forced_bos_token] if data_args.forced_bos_token is not None else None
        )
        model.config.forced_bos_token_id = forced_bos_token_id

448
449
450
451
    # Get the column names for input/target.
    dataset_columns = summarization_name_mapping.get(data_args.dataset_name, None)
    if data_args.text_column is None:
        text_column = dataset_columns[0] if dataset_columns is not None else column_names[0]
452
    else:
453
454
455
456
457
458
459
460
461
462
463
464
465
        text_column = data_args.text_column
        if text_column not in column_names:
            raise ValueError(
                f"--text_column' value '{data_args.text_column}' needs to be one of: {', '.join(column_names)}"
            )
    if data_args.summary_column is None:
        summary_column = dataset_columns[1] if dataset_columns is not None else column_names[1]
    else:
        summary_column = data_args.summary_column
        if summary_column not in column_names:
            raise ValueError(
                f"--summary_column' value '{data_args.summary_column}' needs to be one of: {', '.join(column_names)}"
            )
466
467
468
469
470

    # Temporarily set max_target_length for training.
    max_target_length = data_args.max_target_length
    padding = "max_length" if data_args.pad_to_max_length else False

471
    if training_args.label_smoothing_factor > 0 and not hasattr(model, "prepare_decoder_input_ids_from_labels"):
472
        logger.warning(
473
474
475
476
            "label_smoothing is enabled but the `prepare_decoder_input_ids_from_labels` method is not defined for"
            f"`{model.__class__.__name__}`. This will lead to loss being calculated twice and will take up more memory"
        )

477
    def preprocess_function(examples):
478
        # remove pairs where at least one record is None
479

480
481
482
483
484
485
        inputs, targets = [], []
        for i in range(len(examples[text_column])):
            if examples[text_column][i] is not None and examples[summary_column][i] is not None:
                inputs.append(examples[text_column][i])
                targets.append(examples[summary_column][i])

486
        inputs = [prefix + inp for inp in inputs]
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
        model_inputs = tokenizer(inputs, max_length=data_args.max_source_length, padding=padding, truncation=True)

        # Setup the tokenizer for targets
        with tokenizer.as_target_tokenizer():
            labels = tokenizer(targets, max_length=max_target_length, padding=padding, truncation=True)

        # If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore
        # padding in the loss.
        if padding == "max_length" and data_args.ignore_pad_token_for_loss:
            labels["input_ids"] = [
                [(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"]
            ]

        model_inputs["labels"] = labels["input_ids"]
        return model_inputs

    if training_args.do_train:
504
        if "train" not in raw_datasets:
505
            raise ValueError("--do_train requires a train dataset")
506
        train_dataset = raw_datasets["train"]
507
508
        if data_args.max_train_samples is not None:
            train_dataset = train_dataset.select(range(data_args.max_train_samples))
509
510
511
512
513
514
515
516
517
        with training_args.main_process_first(desc="train dataset map pre-processing"):
            train_dataset = train_dataset.map(
                preprocess_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on train dataset",
            )
518
519
520

    if training_args.do_eval:
        max_target_length = data_args.val_max_target_length
521
        if "validation" not in raw_datasets:
522
            raise ValueError("--do_eval requires a validation dataset")
523
        eval_dataset = raw_datasets["validation"]
524
525
        if data_args.max_eval_samples is not None:
            eval_dataset = eval_dataset.select(range(data_args.max_eval_samples))
526
527
528
529
530
531
532
533
534
        with training_args.main_process_first(desc="validation dataset map pre-processing"):
            eval_dataset = eval_dataset.map(
                preprocess_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on validation dataset",
            )
535

536
537
    if training_args.do_predict:
        max_target_length = data_args.val_max_target_length
538
        if "test" not in raw_datasets:
539
            raise ValueError("--do_predict requires a test dataset")
540
        predict_dataset = raw_datasets["test"]
541
542
        if data_args.max_predict_samples is not None:
            predict_dataset = predict_dataset.select(range(data_args.max_predict_samples))
543
544
545
546
547
548
549
550
551
        with training_args.main_process_first(desc="prediction dataset map pre-processing"):
            predict_dataset = predict_dataset.map(
                preprocess_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on prediction dataset",
            )
552

553
554
    # Data collator
    label_pad_token_id = -100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id
555
556
557
558
559
560
    data_collator = DataCollatorForSeq2Seq(
        tokenizer,
        model=model,
        label_pad_token_id=label_pad_token_id,
        pad_to_multiple_of=8 if training_args.fp16 else None,
    )
561
562

    # Metric
563
    metric = load_metric("rouge")
564

565
566
567
568
569
    def postprocess_text(preds, labels):
        preds = [pred.strip() for pred in preds]
        labels = [label.strip() for label in labels]

        # rougeLSum expects newline after each sentence
570
571
        preds = ["\n".join(nltk.sent_tokenize(pred)) for pred in preds]
        labels = ["\n".join(nltk.sent_tokenize(label)) for label in labels]
572
573
574

        return preds, labels

575
576
577
578
579
580
581
582
583
584
585
    def compute_metrics(eval_preds):
        preds, labels = eval_preds
        if isinstance(preds, tuple):
            preds = preds[0]
        decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
        if data_args.ignore_pad_token_for_loss:
            # Replace -100 in the labels as we can't decode them.
            labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
        decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)

        # Some simple post-processing
586
        decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)
587

588
589
590
        result = metric.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True)
        # Extract a few results from ROUGE
        result = {key: value.mid.fmeasure * 100 for key, value in result.items()}
591
592
593

        prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]
        result["gen_len"] = np.mean(prediction_lens)
594
        result = {k: round(v, 4) for k, v in result.items()}
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
        return result

    # Initialize our Trainer
    trainer = Seq2SeqTrainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
        tokenizer=tokenizer,
        data_collator=data_collator,
        compute_metrics=compute_metrics if training_args.predict_with_generate else None,
    )

    # Training
    if training_args.do_train:
610
611
612
613
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
614
615
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
616
617
        trainer.save_model()  # Saves the tokenizer too for easy upload

618
619
620
621
622
        metrics = train_result.metrics
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))
623

624
625
626
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()
627
628

    # Evaluation
629
    results = {}
630
631
632
633
634
635
    max_length = (
        training_args.generation_max_length
        if training_args.generation_max_length is not None
        else data_args.val_max_target_length
    )
    num_beams = data_args.num_beams if data_args.num_beams is not None else training_args.generation_num_beams
636
637
    if training_args.do_eval:
        logger.info("*** Evaluate ***")
638
        metrics = trainer.evaluate(max_length=max_length, num_beams=num_beams, metric_key_prefix="eval")
639
640
        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
641

642
643
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)
644

645
    if training_args.do_predict:
646
        logger.info("*** Predict ***")
647

648
        predict_results = trainer.predict(
649
            predict_dataset, metric_key_prefix="predict", max_length=max_length, num_beams=num_beams
650
        )
651
652
653
654
655
        metrics = predict_results.metrics
        max_predict_samples = (
            data_args.max_predict_samples if data_args.max_predict_samples is not None else len(predict_dataset)
        )
        metrics["predict_samples"] = min(max_predict_samples, len(predict_dataset))
656

657
658
        trainer.log_metrics("predict", metrics)
        trainer.save_metrics("predict", metrics)
659

660
        if trainer.is_world_process_zero():
661
            if training_args.predict_with_generate:
662
663
                predictions = tokenizer.batch_decode(
                    predict_results.predictions, skip_special_tokens=True, clean_up_tokenization_spaces=True
664
                )
665
666
667
668
                predictions = [pred.strip() for pred in predictions]
                output_prediction_file = os.path.join(training_args.output_dir, "generated_predictions.txt")
                with open(output_prediction_file, "w") as writer:
                    writer.write("\n".join(predictions))
669

670
671
672
673
674
675
676
677
    kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "summarization"}
    if data_args.dataset_name is not None:
        kwargs["dataset_tags"] = data_args.dataset_name
        if data_args.dataset_config_name is not None:
            kwargs["dataset_args"] = data_args.dataset_config_name
            kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
        else:
            kwargs["dataset"] = data_args.dataset_name
Sylvain Gugger's avatar
Sylvain Gugger committed
678

679
680
681
    if data_args.lang is not None:
        kwargs["language"] = data_args.lang

682
    if training_args.push_to_hub:
Sylvain Gugger's avatar
Sylvain Gugger committed
683
        trainer.push_to_hub(**kwargs)
684
685
    else:
        trainer.create_model_card(**kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
686

687
688
    return results

689
690
691
692
693
694
695
696

def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


if __name__ == "__main__":
    main()