modeling_openai_test.py 15 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

19
import os
thomwolf's avatar
thomwolf committed
20
21
22
import unittest
import json
import random
23
24
import shutil
import pytest
thomwolf's avatar
thomwolf committed
25
26
27

import torch

thomwolf's avatar
thomwolf committed
28
29
from pytorch_pretrained_bert import (OpenAIGPTConfig, OpenAIGPTModel,
                                     OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel)
30
from pytorch_pretrained_bert.modeling_openai import PRETRAINED_MODEL_ARCHIVE_MAP
thomwolf's avatar
thomwolf committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44

class OpenAIGPTModelTest(unittest.TestCase):
    class OpenAIGPTModelTester(object):

        def __init__(self,
                     parent,
                     batch_size=13,
                     seq_length=7,
                     is_training=True,
                     use_position_ids=True,
                     use_token_type_ids=True,
                     use_labels=True,
                     vocab_size=99,
                     n_special=1,
45
                     n_positions=33,
thomwolf's avatar
thomwolf committed
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
                     n_embd=32,
                     n_layer=5,
                     n_head=4,
                     n_choices=3,
                     afn="gelu",
                     resid_pdrop=0.1,
                     attn_pdrop=0.1,
                     embd_pdrop=0.1,
                     type_sequence_label_size=2,
                     initializer_range=0.02,
                     num_labels=3,
                     scope=None):
            self.parent = parent
            self.batch_size = batch_size
            self.seq_length = seq_length
            self.is_training = is_training
            self.use_position_ids = use_position_ids
            self.use_token_type_ids = use_token_type_ids
            self.use_labels = use_labels
            self.vocab_size = vocab_size
            self.n_special = n_special
67
            self.n_positions = n_positions
thomwolf's avatar
thomwolf committed
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
            self.n_embd = n_embd
            self.n_layer = n_layer
            self.n_head = n_head
            self.afn = afn
            self.n_choices = n_choices
            self.resid_pdrop = resid_pdrop
            self.attn_pdrop = attn_pdrop
            self.embd_pdrop = embd_pdrop
            self.type_sequence_label_size = type_sequence_label_size
            self.initializer_range = initializer_range
            self.num_labels = num_labels
            self.scope = scope

        def prepare_config_and_inputs(self):
            input_ids = OpenAIGPTModelTest.ids_tensor([self.batch_size, self.n_choices, self.seq_length], self.vocab_size)

            position_ids = None
            if self.use_position_ids:
86
                position_ids = OpenAIGPTModelTest.ids_tensor([self.batch_size, self.n_choices, self.seq_length], self.n_positions)
thomwolf's avatar
thomwolf committed
87
88
89

            token_type_ids = None
            if self.use_token_type_ids:
90
                total_voc = self.vocab_size + self.n_special
thomwolf's avatar
thomwolf committed
91
92
                token_type_ids = OpenAIGPTModelTest.ids_tensor([self.batch_size, self.n_choices, self.seq_length], total_voc)

thomwolf's avatar
thomwolf committed
93
            mc_labels = None
thomwolf's avatar
thomwolf committed
94
            lm_labels = None
thomwolf's avatar
thomwolf committed
95
            mc_token_ids = None
thomwolf's avatar
thomwolf committed
96
            if self.use_labels:
thomwolf's avatar
thomwolf committed
97
                mc_labels = OpenAIGPTModelTest.ids_tensor([self.batch_size], self.type_sequence_label_size)
thomwolf's avatar
thomwolf committed
98
                lm_labels = OpenAIGPTModelTest.ids_tensor([self.batch_size, self.n_choices, self.seq_length], self.num_labels)
thomwolf's avatar
thomwolf committed
99
                mc_token_ids = OpenAIGPTModelTest.ids_tensor([self.batch_size, self.n_choices], self.seq_length)
thomwolf's avatar
thomwolf committed
100
101
102

            config = OpenAIGPTConfig(
                vocab_size_or_config_json_file=self.vocab_size,
103
                n_positions=self.n_positions,
thomwolf's avatar
thomwolf committed
104
105
106
107
108
109
110
111
112
113
114
                n_special=self.n_special,
                n_embd=self.n_embd,
                n_layer=self.n_layer,
                n_head=self.n_head,
                afn=self.afn,
                resid_pdrop=self.resid_pdrop,
                attn_pdrop=self.attn_pdrop,
                embd_pdrop=self.embd_pdrop,
                initializer_range=self.initializer_range)

            return (config, input_ids, token_type_ids, position_ids,
thomwolf's avatar
thomwolf committed
115
                    mc_labels, lm_labels, mc_token_ids)
thomwolf's avatar
thomwolf committed
116
117

        def create_openai_model(self, config, input_ids, token_type_ids, position_ids,
thomwolf's avatar
thomwolf committed
118
                                mc_labels, lm_labels, mc_token_ids):
thomwolf's avatar
thomwolf committed
119
            model = OpenAIGPTModel(config)
thomwolf's avatar
thomwolf committed
120
            model.eval()
thomwolf's avatar
thomwolf committed
121
122
123
124
125
126
127
            hidden_states = model(input_ids, position_ids, token_type_ids)
            outputs = {
                "hidden_states": hidden_states,
            }
            return outputs

        def check_openai_model_output(self, result):
128
            self.parent.assertEqual(len(result["hidden_states"]), self.n_layer + 1)
thomwolf's avatar
thomwolf committed
129
            self.parent.assertListEqual(
130
                list(result["hidden_states"][0].size()),
thomwolf's avatar
thomwolf committed
131
132
133
                [self.batch_size, self.n_choices, self.seq_length, self.n_embd])


thomwolf's avatar
thomwolf committed
134
        def create_openai_lm_head(self, config, input_ids, token_type_ids, position_ids,
thomwolf's avatar
thomwolf committed
135
                                       mc_labels, lm_labels, mc_token_ids):
thomwolf's avatar
thomwolf committed
136
            model = OpenAIGPTLMHeadModel(config)
thomwolf's avatar
thomwolf committed
137
            model.eval()
thomwolf's avatar
thomwolf committed
138
139
140
141
142
143
144
145
146
            loss = model(input_ids, position_ids, token_type_ids, lm_labels)
            lm_logits = model(input_ids, position_ids, token_type_ids)
            outputs = {
                "loss": loss,
                "lm_logits": lm_logits,
            }
            return outputs

        def check_openai_lm_head_output(self, result):
147
            total_voc = self.n_special + self.vocab_size
thomwolf's avatar
thomwolf committed
148
149
150
151
152
153
154
155
156
            self.parent.assertListEqual(
                list(result["lm_logits"].size()),
                [self.batch_size, self.n_choices, self.seq_length, total_voc])

        def check_openai_lm_head_loss_output(self, result):
            self.parent.assertListEqual(
                list(result["loss"].size()),
                [])

thomwolf's avatar
thomwolf committed
157
        def create_openai_double_heads(self, config, input_ids, token_type_ids, position_ids,
thomwolf's avatar
thomwolf committed
158
                                       mc_labels, lm_labels, mc_token_ids):
thomwolf's avatar
thomwolf committed
159
            model = OpenAIGPTDoubleHeadsModel(config)
thomwolf's avatar
thomwolf committed
160
            model.eval()
thomwolf's avatar
thomwolf committed
161
            loss = model(input_ids, mc_token_ids,
thomwolf's avatar
thomwolf committed
162
163
                         lm_labels=lm_labels, mc_labels=mc_labels,
                         token_type_ids=token_type_ids, position_ids=position_ids)
thomwolf's avatar
thomwolf committed
164
            lm_logits, mc_logits = model(input_ids, mc_token_ids, position_ids=position_ids, token_type_ids=token_type_ids)
thomwolf's avatar
thomwolf committed
165
166
167
            outputs = {
                "loss": loss,
                "lm_logits": lm_logits,
thomwolf's avatar
thomwolf committed
168
                "mc_logits": mc_logits,
thomwolf's avatar
thomwolf committed
169
170
171
172
            }
            return outputs

        def check_openai_double_heads_output(self, result):
173
            total_voc = self.n_special + self.vocab_size
thomwolf's avatar
thomwolf committed
174
175
176
177
            self.parent.assertListEqual(
                list(result["lm_logits"].size()),
                [self.batch_size, self.n_choices, self.seq_length, total_voc])
            self.parent.assertListEqual(
thomwolf's avatar
thomwolf committed
178
                list(result["mc_logits"].size()),
thomwolf's avatar
thomwolf committed
179
180
181
182
183
184
185
                [self.batch_size, self.n_choices])

        def check_openai_double_heads_loss_output(self, result):
            self.parent.assertListEqual(
                [list(l.size()) for l in result["loss"]],
                [[], []])

186
187
188
189
190
        def create_and_check_openai_for_headmasking(self, config, input_ids, token_type_ids, position_ids,
                                                mc_labels, lm_labels, mc_token_ids):
            for model_class in (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel):
                model = model_class(config=config, keep_multihead_output=True)
                model.eval()
thomwolf's avatar
thomwolf committed
191
192
193
                head_mask = torch.ones(self.n_layer, self.n_head).to(input_ids.device)
                head_mask[0, 1:-1] = 0.0 # Mask all but the first and last heads on the first layer
                head_mask[-1, 1:] = 0.0  # Mask all but the first head on the last layer
194
195
196
197
198
                if isinstance(model, OpenAIGPTDoubleHeadsModel):
                    output = model(input_ids, mc_token_ids, head_mask=head_mask)
                else:
                    output = model(input_ids, head_mask=head_mask)

199
200
201
202
                if isinstance(model, OpenAIGPTModel):
                    output = sum(t.sum() for t in output[0])
                elif isinstance(output, (list, tuple)):
                    output = sum(t.sum() for t in output)
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
                output = output.sum()
                output.backward()
                multihead_outputs = (model if isinstance(model, OpenAIGPTModel) else model.transformer).get_multihead_outputs()

                self.parent.assertEqual(len(multihead_outputs), self.n_layer)
                self.parent.assertListEqual(
                    list(multihead_outputs[0].size()),
                    [self.batch_size * self.n_choices, self.n_head,
                        self.seq_length, self.n_embd // self.n_head])
                self.parent.assertEqual(
                    len(multihead_outputs[0][:, 1:(self.n_head-1), :, :].nonzero()),
                    0)
                self.parent.assertEqual(
                    len(multihead_outputs[0][:, 0, :, :].nonzero()),
                    self.batch_size * self.n_choices * self.seq_length * self.n_embd // self.n_head)
                self.parent.assertEqual(
                    len(multihead_outputs[0][:, self.n_head-1, :, :].nonzero()),
                    self.batch_size * self.n_choices * self.seq_length * self.n_embd // self.n_head)

222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
                self.parent.assertListEqual(
                    list(multihead_outputs[1].size()),
                    [self.batch_size * self.n_choices, self.n_head,
                     self.seq_length, self.n_embd // self.n_head])
                self.parent.assertEqual(
                    len(multihead_outputs[1].nonzero()),
                    multihead_outputs[1].numel())

                self.parent.assertListEqual(
                    list(multihead_outputs[-1].size()),
                    [self.batch_size * self.n_choices, self.n_head,
                     self.seq_length, self.n_embd // self.n_head])
                self.parent.assertEqual(
                    len(multihead_outputs[-1][:, 1:, :, :].nonzero()),
                    0)
                self.parent.assertEqual(
                    len(multihead_outputs[-1][:, 0, :, :].nonzero()),
                    self.batch_size * self.n_choices * self.seq_length * self.n_embd // self.n_head)


242
243
244
245
246
247
248
249
250
251
252
253
254
255
        def create_and_check_openai_for_head_pruning(self, config, input_ids, token_type_ids, position_ids,
                                                     mc_labels, lm_labels, mc_token_ids):
            for model_class in (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel):
                model = model_class(config=config, keep_multihead_output=True)
                model.eval()
                transformer = model if isinstance(model, OpenAIGPTModel) else model.transformer
                heads_to_prune = {0: list(range(1, self.n_head)),
                                  -1: [0]}
                transformer.prune_heads(heads_to_prune)
                if isinstance(model, OpenAIGPTDoubleHeadsModel):
                    output = model(input_ids, mc_token_ids)
                else:
                    output = model(input_ids)

256
257
258
259
                if isinstance(model, OpenAIGPTModel):
                    output = sum(t.sum() for t in output[0])
                elif isinstance(output, (list, tuple)):
                    output = sum(t.sum() for t in output)
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
                output = output.sum()
                output.backward()
                multihead_outputs = transformer.get_multihead_outputs()

                self.parent.assertEqual(len(multihead_outputs), self.n_layer)
                self.parent.assertListEqual(
                    list(multihead_outputs[0].size()),
                    [self.batch_size * self.n_choices, 1,
                        self.seq_length, self.n_embd // self.n_head])
                self.parent.assertListEqual(
                    list(multihead_outputs[1].size()),
                    [self.batch_size * self.n_choices, self.n_head,
                        self.seq_length, self.n_embd // self.n_head])
                self.parent.assertListEqual(
                    list(multihead_outputs[-1].size()),
                    [self.batch_size * self.n_choices, self.n_head-1,
                        self.seq_length, self.n_embd // self.n_head])


thomwolf's avatar
thomwolf committed
279
280
281
282
283
284
285
286
287
    def test_default(self):
        self.run_tester(OpenAIGPTModelTest.OpenAIGPTModelTester(self))

    def test_config_to_json_string(self):
        config = OpenAIGPTConfig(vocab_size_or_config_json_file=99, n_embd=37)
        obj = json.loads(config.to_json_string())
        self.assertEqual(obj["vocab_size"], 99)
        self.assertEqual(obj["n_embd"], 37)

288
289
290
291
292
293
294
295
    def test_config_to_json_file(self):
        config_first = OpenAIGPTConfig(vocab_size_or_config_json_file=99, n_embd=37)
        json_file_path = "/tmp/config.json"
        config_first.to_json_file(json_file_path)
        config_second = OpenAIGPTConfig.from_json_file(json_file_path)
        os.remove(json_file_path)
        self.assertEqual(config_second.to_dict(), config_first.to_dict())

296
297
298
299
300
301
302
303
    @pytest.mark.slow
    def test_model_from_pretrained(self):
        cache_dir = "/tmp/pytorch_pretrained_bert_test/"
        for model_name in list(PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
            model = OpenAIGPTModel.from_pretrained(model_name, cache_dir=cache_dir)
            shutil.rmtree(cache_dir)
            self.assertIsNotNone(model)

thomwolf's avatar
thomwolf committed
304
305
306
307
308
    def run_tester(self, tester):
        config_and_inputs = tester.prepare_config_and_inputs()
        output_result = tester.create_openai_model(*config_and_inputs)
        tester.check_openai_model_output(output_result)

thomwolf's avatar
thomwolf committed
309
310
311
312
        output_result = tester.create_openai_lm_head(*config_and_inputs)
        tester.check_openai_lm_head_output(output_result)
        tester.check_openai_lm_head_loss_output(output_result)

thomwolf's avatar
thomwolf committed
313
314
315
316
        output_result = tester.create_openai_double_heads(*config_and_inputs)
        tester.check_openai_double_heads_output(output_result)
        tester.check_openai_double_heads_loss_output(output_result)

317
318
319
        tester.create_and_check_openai_for_headmasking(*config_and_inputs)
        tester.create_and_check_openai_for_head_pruning(*config_and_inputs)

thomwolf's avatar
thomwolf committed
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
    @classmethod
    def ids_tensor(cls, shape, vocab_size, rng=None, name=None):
        """Creates a random int32 tensor of the shape within the vocab size."""
        if rng is None:
            rng = random.Random()

        total_dims = 1
        for dim in shape:
            total_dims *= dim

        values = []
        for _ in range(total_dims):
            values.append(rng.randint(0, vocab_size - 1))

        return torch.tensor(data=values, dtype=torch.long).view(shape).contiguous()


if __name__ == "__main__":
    unittest.main()