test_deepspeed.py 4.61 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import json
16
17
18
19
import os
import unittest

from transformers.integrations import is_deepspeed_available
20
21
22
23
24
25
26
27
from transformers.testing_utils import (
    TestCasePlus,
    execute_subprocess_async,
    get_gpu_count,
    require_torch_gpu,
    require_torch_multi_gpu,
    slow,
)
28
29
30
31
32
33
34
from transformers.trainer_utils import set_seed


set_seed(42)
MBART_TINY = "sshleifer/tiny-mbart"


35
36
37
38
39
def load_json(path):
    with open(path) as f:
        return json.load(f)


40
41
42
43
44
45
46
47
48
49
50
# a candidate for testing_utils
def require_deepspeed(test_case):
    """
    Decorator marking a test that requires deepspeed
    """
    if not is_deepspeed_available():
        return unittest.skip("test requires deepspeed")(test_case)
    else:
        return test_case


51
@slow
52
@require_deepspeed
53
@require_torch_gpu
54
55
class TestDeepSpeed(TestCasePlus):
    @require_torch_multi_gpu
56
57
    def test_basic_distributed(self):
        self.run_quick(distributed=True)
58
59
60

    @require_torch_multi_gpu
    def test_grad_acum(self):
61
        self.run_quick(distributed=True, extra_args_str="--gradient_accumulation_steps 2")
62

63
    def test_do_eval_no_train(self):
64
        # we should not fail if train is skipped
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
        output_dir = self.run_trainer(
            eval_steps=1,
            max_len=12,
            model_name=MBART_TINY,
            num_train_epochs=1,
            distributed=False,
            extra_args_str="--do_eval",
            remove_args_str="--do_train",
        )
        val_metrics = load_json(os.path.join(output_dir, "val_results.json"))
        assert "val_bleu" in val_metrics

    # XXX: need to do better validation beyond just that the run was successful
    def run_quick(self, distributed=True, extra_args_str=None, remove_args_str=None):
        output_dir = self.run_trainer(
            eval_steps=1,
            max_len=12,
            model_name=MBART_TINY,
            num_train_epochs=1,
            distributed=distributed,
            extra_args_str=extra_args_str,
            remove_args_str=remove_args_str,
        )
        train_metrics = load_json(os.path.join(output_dir, "train_results.json"))
        assert "train_runtime" in train_metrics
90
91
92
93
94
95
96

    def run_trainer(
        self,
        eval_steps: int,
        max_len: str,
        model_name: str,
        num_train_epochs: int,
97
        distributed: bool = True,
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
        extra_args_str: str = None,
        remove_args_str: str = None,
    ):
        data_dir = self.examples_dir / "seq2seq/test_data/wmt_en_ro"
        output_dir = self.get_auto_remove_tmp_dir()
        args = f"""
            --model_name_or_path {model_name}
            --data_dir {data_dir}
            --output_dir {output_dir}
            --overwrite_output_dir
            --n_train 8
            --n_val 8
            --max_source_length {max_len}
            --max_target_length {max_len}
            --val_max_target_length {max_len}
            --do_train
            --num_train_epochs {str(num_train_epochs)}
            --per_device_train_batch_size 4
            --learning_rate 3e-3
            --warmup_steps 8
            --predict_with_generate
            --logging_steps 0
            --save_steps {str(eval_steps)}
            --group_by_length
            --label_smoothing_factor 0.1
            --adafactor
            --task translation
            --tgt_lang ro_RO
            --src_lang en_XX
        """.split()

        if extra_args_str is not None:
            args.extend(extra_args_str.split())

        if remove_args_str is not None:
            remove_args = remove_args_str.split()
            args = [x for x in args if x not in remove_args]

        ds_args = f"--deepspeed {self.test_file_dir_str}/ds_config.json".split()
137
138
139
140
141
        script = [f"{self.examples_dir_str}/seq2seq/finetune_trainer.py"]
        num_gpus = get_gpu_count() if distributed else 1
        launcher = f"deepspeed --num_gpus {num_gpus}".split()

        cmd = launcher + script + args + ds_args
142
        # keep for quick debug
143
        # print(" ".join([f"PYTHONPATH={self.src_dir_str}"] +cmd)); die
144
145
146
        execute_subprocess_async(cmd, env=self.get_env())

        return output_dir