test_multi_node_model_parallel.py 4.41 KB
Newer Older
1
import json
Philipp Schmid's avatar
Philipp Schmid committed
2
import os
3
import subprocess
Philipp Schmid's avatar
Philipp Schmid committed
4
5
6
7
8
9
10
11
12
13
14
import unittest
from ast import literal_eval

import pytest

from parameterized import parameterized, parameterized_class

from . import is_sagemaker_available


if is_sagemaker_available():
15
    from sagemaker import Session, TrainingJobAnalytics
Philipp Schmid's avatar
Philipp Schmid committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
    from sagemaker.huggingface import HuggingFace


@pytest.mark.skipif(
    literal_eval(os.getenv("TEST_SAGEMAKER", "False")) is not True,
    reason="Skipping test because should only be run when releasing minor transformers version",
)
@pytest.mark.usefixtures("sm_env")
@parameterized_class(
    [
        {
            "framework": "pytorch",
            "script": "run_glue_model_parallelism.py",
            "model_name_or_path": "roberta-large",
            "instance_type": "ml.p3dn.24xlarge",
31
            "results": {"train_runtime": 1500, "eval_accuracy": 0.3, "eval_loss": 1.2},
Philipp Schmid's avatar
Philipp Schmid committed
32
        },
33
34
35
36
37
        {
            "framework": "pytorch",
            "script": "run_glue.py",
            "model_name_or_path": "roberta-large",
            "instance_type": "ml.p3dn.24xlarge",
38
            "results": {"train_runtime": 1500, "eval_accuracy": 0.3, "eval_loss": 1.2},
39
        },
Philipp Schmid's avatar
Philipp Schmid committed
40
41
42
43
    ]
)
class MultiNodeTest(unittest.TestCase):
    def setUp(self):
44
45
46
47
48
49
        if self.framework == "pytorch":
            subprocess.run(
                f"cp ./examples/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split(),
                encoding="utf-8",
                check=True,
            )
Philipp Schmid's avatar
Philipp Schmid committed
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
        assert hasattr(self, "env")

    def create_estimator(self, instance_count):

        # configuration for running training on smdistributed Model Parallel
        mpi_options = {
            "enabled": True,
            "processes_per_host": 8,
        }
        smp_options = {
            "enabled": True,
            "parameters": {
                "microbatches": 4,
                "placement_strategy": "spread",
                "pipeline": "interleaved",
                "optimize": "speed",
                "partitions": 4,
                "ddp": True,
            },
        }

        distribution = {"smdistributed": {"modelparallel": smp_options}, "mpi": mpi_options}

73
        name_extension = "trainer" if self.script == "run_glue.py" else "smtrainer"
Philipp Schmid's avatar
Philipp Schmid committed
74
75
76
77
78
79
        # creates estimator
        return HuggingFace(
            entry_point=self.script,
            source_dir=self.env.test_path,
            role=self.env.role,
            image_uri=self.env.image_uri,
80
            base_job_name=f"{self.env.base_job_name}-{instance_count}-smp-{name_extension}",
Philipp Schmid's avatar
Philipp Schmid committed
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
            instance_count=instance_count,
            instance_type=self.instance_type,
            debugger_hook_config=False,
            hyperparameters={
                **self.env.hyperparameters,
                "model_name_or_path": self.model_name_or_path,
                "max_steps": 500,
            },
            metric_definitions=self.env.metric_definitions,
            distribution=distribution,
            py_version="py36",
        )

    def save_results_as_csv(self, job_name):
        TrainingJobAnalytics(job_name).export_csv(f"{self.env.test_path}/{job_name}_metrics.csv")

    # @parameterized.expand([(2,), (4,),])
    @parameterized.expand([(1,)])
    def test_scripz(self, instance_count):
        # create estimator
        estimator = self.create_estimator(instance_count)

        # run training
        estimator.fit()

        # result dataframe
        result_metrics_df = TrainingJobAnalytics(estimator.latest_training_job.name).dataframe()

        # extract kpis
        eval_accuracy = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"])
        eval_loss = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"])
112
113
114
115
        # get train time from SageMaker job, this includes starting, preprocessing, stopping
        train_runtime = (
            Session().describe_training_job(estimator.latest_training_job.name).get("TrainingTimeInSeconds", 999999)
        )
Philipp Schmid's avatar
Philipp Schmid committed
116
117

        # assert kpis
118
        assert train_runtime <= self.results["train_runtime"]
Philipp Schmid's avatar
Philipp Schmid committed
119
120
        assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy)
        assert all(t <= self.results["eval_loss"] for t in eval_loss)
121
122
123
124

        # dump tests result into json file to share in PR
        with open(f"{estimator.latest_training_job.name}.json", "w") as outfile:
            json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss}, outfile)