test_multi_node_model_parallel.py 4 KB
Newer Older
Philipp Schmid's avatar
Philipp Schmid committed
1
import os
2
import subprocess
Philipp Schmid's avatar
Philipp Schmid committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import unittest
from ast import literal_eval

import pytest

from parameterized import parameterized, parameterized_class

from . import is_sagemaker_available


if is_sagemaker_available():
    from sagemaker import TrainingJobAnalytics
    from sagemaker.huggingface import HuggingFace


@pytest.mark.skipif(
    literal_eval(os.getenv("TEST_SAGEMAKER", "False")) is not True,
    reason="Skipping test because should only be run when releasing minor transformers version",
)
@pytest.mark.usefixtures("sm_env")
@parameterized_class(
    [
        {
            "framework": "pytorch",
            "script": "run_glue_model_parallelism.py",
            "model_name_or_path": "roberta-large",
            "instance_type": "ml.p3dn.24xlarge",
            "results": {"train_runtime": 700, "eval_accuracy": 0.3, "eval_loss": 1.2},
        },
32
33
34
35
36
37
38
        {
            "framework": "pytorch",
            "script": "run_glue.py",
            "model_name_or_path": "roberta-large",
            "instance_type": "ml.p3dn.24xlarge",
            "results": {"train_runtime": 700, "eval_accuracy": 0.3, "eval_loss": 1.2},
        },
Philipp Schmid's avatar
Philipp Schmid committed
39
40
41
42
    ]
)
class MultiNodeTest(unittest.TestCase):
    def setUp(self):
43
44
45
46
47
48
        if self.framework == "pytorch":
            subprocess.run(
                f"cp ./examples/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split(),
                encoding="utf-8",
                check=True,
            )
Philipp Schmid's avatar
Philipp Schmid committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
        assert hasattr(self, "env")

    def create_estimator(self, instance_count):

        # configuration for running training on smdistributed Model Parallel
        mpi_options = {
            "enabled": True,
            "processes_per_host": 8,
        }
        smp_options = {
            "enabled": True,
            "parameters": {
                "microbatches": 4,
                "placement_strategy": "spread",
                "pipeline": "interleaved",
                "optimize": "speed",
                "partitions": 4,
                "ddp": True,
            },
        }

        distribution = {"smdistributed": {"modelparallel": smp_options}, "mpi": mpi_options}

        # creates estimator
        return HuggingFace(
            entry_point=self.script,
            source_dir=self.env.test_path,
            role=self.env.role,
            image_uri=self.env.image_uri,
            base_job_name=f"{self.env.base_job_name}-{instance_count}-smp",
            instance_count=instance_count,
            instance_type=self.instance_type,
            debugger_hook_config=False,
            hyperparameters={
                **self.env.hyperparameters,
                "model_name_or_path": self.model_name_or_path,
                "max_steps": 500,
            },
            metric_definitions=self.env.metric_definitions,
            distribution=distribution,
            py_version="py36",
        )

    def save_results_as_csv(self, job_name):
        TrainingJobAnalytics(job_name).export_csv(f"{self.env.test_path}/{job_name}_metrics.csv")

    # @parameterized.expand([(2,), (4,),])
    @parameterized.expand([(1,)])
    def test_scripz(self, instance_count):
        # create estimator
        estimator = self.create_estimator(instance_count)

        # run training
        estimator.fit()

        # save csv
        self.save_results_as_csv(estimator.latest_training_job.name)
        # result dataframe
        result_metrics_df = TrainingJobAnalytics(estimator.latest_training_job.name).dataframe()

        # extract kpis
        train_runtime = list(result_metrics_df[result_metrics_df.metric_name == "train_runtime"]["value"])
        eval_accuracy = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"])
        eval_loss = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"])

        # assert kpis
        assert all(t <= self.results["train_runtime"] for t in train_runtime)
        assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy)
        assert all(t <= self.results["eval_loss"] for t in eval_loss)