test_utils.py 140 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2020 The HuggingFace Team Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a clone of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


17
import inspect
18
import tempfile
19
import unittest
20
import warnings
21

22
23
import numpy as np

24
from transformers import is_torch_available, pipeline
25
from transformers.testing_utils import (
26
    is_flaky,
27
28
29
30
31
32
    require_accelerate,
    require_torch,
    require_torch_multi_accelerator,
    slow,
    torch_device,
)
33

34
from ..test_modeling_common import floats_tensor, ids_tensor
35
from .test_framework_agnostic import GenerationIntegrationTestsMixin
36

37
38
39
40

if is_torch_available():
    import torch

41
    from transformers import (
42
        AutoModelForCausalLM,
43
        AutoModelForSeq2SeqLM,
44
45
        AutoModelForSpeechSeq2Seq,
        AutoModelForVision2Seq,
46
        AutoTokenizer,
47
        BartForCausalLM,
48
49
50
51
        BartForConditionalGeneration,
        BartTokenizer,
        GPT2LMHeadModel,
        GPT2Tokenizer,
52
        ImageGPTForCausalImageModeling,
53
        SpeechEncoderDecoderModel,
54
55
        top_k_top_p_filtering,
    )
56
57
58
59
60
61
62
63
    from transformers.generation import (
        BeamSampleDecoderOnlyOutput,
        BeamSampleEncoderDecoderOutput,
        BeamSearchDecoderOnlyOutput,
        BeamSearchEncoderDecoderOutput,
        BeamSearchScorer,
        ConstrainedBeamSearchScorer,
        DisjunctiveConstraint,
64
65
        ForcedBOSTokenLogitsProcessor,
        ForcedEOSTokenLogitsProcessor,
66
67
        GreedySearchDecoderOnlyOutput,
        GreedySearchEncoderDecoderOutput,
68
        HammingDiversityLogitsProcessor,
69
        InfNanRemoveLogitsProcessor,
70
        LogitsProcessorList,
71
        MaxLengthCriteria,
72
73
74
        MinLengthLogitsProcessor,
        NoBadWordsLogitsProcessor,
        NoRepeatNGramLogitsProcessor,
75
        PhrasalConstraint,
76
        RepetitionPenaltyLogitsProcessor,
77
78
79
80
        SampleDecoderOnlyOutput,
        SampleEncoderDecoderOutput,
        StoppingCriteria,
        StoppingCriteriaList,
81
82
83
84
85
86
87
88
89
        TemperatureLogitsWarper,
        TopKLogitsWarper,
        TopPLogitsWarper,
    )


class GenerationTesterMixin:
    model_tester = None
    all_generative_model_classes = ()
Suraj Patil's avatar
Suraj Patil committed
90
    input_name = "input_ids"
91

92
    def _get_input_ids_and_config(self, batch_size=2):
93
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Suraj Patil's avatar
Suraj Patil committed
94
        input_ids = inputs_dict[self.input_name]
95
96
97

        # cut to half length & take max batch_size 3
        sequence_length = input_ids.shape[-1] // 2
98
        input_ids = input_ids[:batch_size, :sequence_length]
99
100
101
102
103

        # generate max 3 tokens
        max_length = input_ids.shape[-1] + 3
        if config.eos_token_id is not None and config.pad_token_id is None:
            # hack to allow generate for models such as GPT2 as is done in `generate()`
104
105
106
            if isinstance(config.eos_token_id, int):
                config.eos_token_id = [config.eos_token_id]
            config.pad_token_id = config.eos_token_id[0]
Yih-Dar's avatar
Yih-Dar committed
107
        attention_mask = torch.ones_like(input_ids, dtype=torch.long)[:batch_size, :sequence_length]
108

109
110
111
        return config, input_ids, attention_mask, max_length

    @staticmethod
112
113
114
115
116
117
118
119
    def _get_logits_processor_and_kwargs(
        input_length,
        eos_token_id,
        forced_bos_token_id=None,
        forced_eos_token_id=None,
        max_length=None,
        diversity_penalty=None,
    ):
120
        process_kwargs = {
121
            "min_length": input_length + 1 if max_length is None else max_length - 1,
122
123
            "bad_words_ids": [[1, 0]],
            "repetition_penalty": 1.2,
124
            "remove_invalid_values": True,
125
        }
126
127
128
129
130
        # NoRepeatNGramLogitsProcessor + forced tokens may result in no valid continuations
        if forced_bos_token_id is None and forced_eos_token_id is None:
            process_kwargs["no_repeat_ngram_size"] = 2

        # NOTE: the order of operations here should match `generate` for accurate testing
131
132
        logits_processor = LogitsProcessorList(
            (
133
134
135
136
137
138
139
                [
                    HammingDiversityLogitsProcessor(diversity_penalty, num_beams=2, num_beam_groups=2),
                ]
                if diversity_penalty is not None
                else []
            )
            + (
140
141
142
143
144
145
                [
                    MinLengthLogitsProcessor(process_kwargs["min_length"], eos_token_id),
                ]
                if eos_token_id is not None
                else []
            )
146
147
148
149
150
151
152
153
154
155
156
157
            + (
                [
                    ForcedBOSTokenLogitsProcessor(forced_bos_token_id),
                ]
                if forced_bos_token_id is not None
                else []
            )
            + (
                [ForcedEOSTokenLogitsProcessor(max_length, forced_eos_token_id)]
                if forced_eos_token_id is not None
                else []
            )
158
159
160
161
162
163
164
165
            + [NoBadWordsLogitsProcessor(process_kwargs["bad_words_ids"], eos_token_id)]
            + (
                [NoRepeatNGramLogitsProcessor(process_kwargs["no_repeat_ngram_size"])]
                if forced_bos_token_id is None and forced_eos_token_id is None
                else []
            )
            + [RepetitionPenaltyLogitsProcessor(process_kwargs["repetition_penalty"])]
            + [InfNanRemoveLogitsProcessor()]  # prevent flaky generation test failures
166
        )
167

168
169
170
171
172
173
174
        return process_kwargs, logits_processor

    @staticmethod
    def _get_warper_and_kwargs(num_beams):
        warp_kwargs = {"top_k": 10, "top_p": 0.7, "temperature": 0.7}
        logits_warper = LogitsProcessorList(
            [
Patrick von Platen's avatar
Patrick von Platen committed
175
                TemperatureLogitsWarper(warp_kwargs["temperature"]),
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
                TopKLogitsWarper(top_k=warp_kwargs["top_k"], min_tokens_to_keep=(2 if num_beams > 1 else 1)),
                TopPLogitsWarper(top_p=warp_kwargs["top_p"], min_tokens_to_keep=(2 if num_beams > 1 else 1)),
            ]
        )
        return warp_kwargs, logits_warper

    @staticmethod
    def _get_beam_scorer_and_kwargs(batch_size, max_length, num_return_sequences=1):
        beam_kwargs = {
            "early_stopping": False,
            "length_penalty": 2.0,
            "num_beams": 2,
            "num_return_sequences": num_return_sequences,
        }
        beam_scorer = BeamSearchScorer(
            batch_size=batch_size,
            num_beams=beam_kwargs["num_beams"],
            device=torch_device,
            length_penalty=beam_kwargs["length_penalty"],
            do_early_stopping=beam_kwargs["early_stopping"],
            num_beam_hyps_to_keep=num_return_sequences,
        )
        return beam_kwargs, beam_scorer

200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
    @staticmethod
    def _get_diverse_beam_scorer_and_kwargs(batch_size, max_length, num_return_sequences=1):
        beam_kwargs = {
            "early_stopping": False,
            "length_penalty": 2.0,
            "num_beams": 2,
            "num_return_sequences": num_return_sequences,
            "num_beam_groups": 2,  # one beam per group
            "diversity_penalty": 2.0,
        }
        beam_scorer = BeamSearchScorer(
            batch_size=batch_size,
            num_beams=beam_kwargs["num_beams"],
            device=torch_device,
            length_penalty=beam_kwargs["length_penalty"],
            do_early_stopping=beam_kwargs["early_stopping"],
            num_beam_hyps_to_keep=num_return_sequences,
            num_beam_groups=beam_kwargs["num_beam_groups"],
        )
        return beam_kwargs, beam_scorer

221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
    @staticmethod
    def _get_constrained_beam_scorer_and_kwargs(batch_size, max_length, constraints, num_return_sequences=1):
        beam_kwargs = {
            "early_stopping": False,
            "length_penalty": 2.0,
            "num_beams": num_return_sequences * 4,
            "num_return_sequences": num_return_sequences,
        }
        beam_scorer = ConstrainedBeamSearchScorer(
            batch_size=batch_size,
            constraints=constraints,
            num_beams=beam_kwargs["num_beams"],
            device=torch_device,
            length_penalty=beam_kwargs["length_penalty"],
            do_early_stopping=beam_kwargs["early_stopping"],
            num_beam_hyps_to_keep=num_return_sequences,
        )
        return beam_kwargs, beam_scorer

240
    @staticmethod
241
242
243
    def _get_encoder_outputs(
        model, input_ids, attention_mask, output_attentions=None, output_hidden_states=None, num_interleave=1
    ):
244
        encoder = model.get_encoder()
245
246
247
248
249
250
        encoder_outputs = encoder(
            input_ids,
            attention_mask=attention_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
        )
251
252
253
254
255
256
257
        encoder_outputs["last_hidden_state"] = encoder_outputs.last_hidden_state.repeat_interleave(
            num_interleave, dim=0
        )
        input_ids = torch.zeros_like(input_ids[:, :1]) + model._get_decoder_start_token_id()
        attention_mask = None
        return encoder_outputs, input_ids, attention_mask

258
259
260
261
262
263
264
265
266
267
268
    def _greedy_generate(
        self,
        model,
        input_ids,
        attention_mask,
        max_length,
        output_scores=False,
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
269
270
        if model.config.is_encoder_decoder:
            max_length = 4
271
        logits_process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
272
273
274
275
276
            input_ids.shape[-1],
            eos_token_id=model.config.eos_token_id,
            forced_bos_token_id=model.config.forced_bos_token_id,
            forced_eos_token_id=model.config.forced_eos_token_id,
            max_length=max_length,
277
278
279
        )

        kwargs = {}
280
        model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
281
282
283
284
285
286
287
288
289
290
        output_generate = model.generate(
            input_ids,
            do_sample=False,
            num_beams=1,
            max_length=max_length,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            output_scores=output_scores,
            return_dict_in_generate=return_dict_in_generate,
            **logits_process_kwargs,
291
            **model_kwargs,
292
293
294
295
296
297
298
299
300
301
302
303
304
        )

        if model.config.is_encoder_decoder:
            encoder_outputs, input_ids, attention_mask = self._get_encoder_outputs(
                model,
                input_ids,
                attention_mask,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )
            kwargs["encoder_outputs"] = encoder_outputs

        with torch.no_grad():
305
            model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
306
307
308
309
310
311
312
313
314
            output_greedy = model.greedy_search(
                input_ids,
                max_length=max_length,
                logits_processor=logits_processor,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                output_scores=output_scores,
                return_dict_in_generate=return_dict_in_generate,
                **kwargs,
315
                **model_kwargs,
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
            )
        return output_greedy, output_generate

    def _sample_generate(
        self,
        model,
        input_ids,
        attention_mask,
        max_length,
        num_return_sequences,
        logits_processor,
        logits_warper,
        logits_warper_kwargs,
        process_kwargs,
        output_scores=False,
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
        torch.manual_seed(0)
336
        model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
337
338
339
340
341
342
343
344
345
346
347
348
        output_generate = model.generate(
            input_ids,
            do_sample=True,
            num_beams=1,
            max_length=max_length,
            num_return_sequences=num_return_sequences,
            output_scores=output_scores,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict_in_generate=return_dict_in_generate,
            **logits_warper_kwargs,
            **process_kwargs,
349
            **model_kwargs,
350
351
352
353
354
        )

        torch.manual_seed(0)
        kwargs = {}
        if model.config.is_encoder_decoder:
355
            encoder_outputs, input_ids, attention_mask = self._get_encoder_outputs(
356
357
358
359
360
361
362
363
                model,
                input_ids,
                attention_mask,
                num_interleave=num_return_sequences,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )
            kwargs["encoder_outputs"] = encoder_outputs
364
365
        elif attention_mask is not None:
            attention_mask = attention_mask.repeat_interleave(num_return_sequences, dim=0)
366
367

        with torch.no_grad():
368
            model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
Vasudev Gupta's avatar
Vasudev Gupta committed
369
            output_sample = model.sample(
370
                input_ids.repeat_interleave(num_return_sequences, dim=0),
Vasudev Gupta's avatar
Vasudev Gupta committed
371
372
373
374
375
376
377
378
                max_length=max_length,
                logits_processor=logits_processor,
                logits_warper=logits_warper,
                output_scores=output_scores,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict_in_generate=return_dict_in_generate,
                **kwargs,
379
                **model_kwargs,
Vasudev Gupta's avatar
Vasudev Gupta committed
380
            )
381

382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
        return output_sample, output_generate

    def _beam_search_generate(
        self,
        model,
        input_ids,
        attention_mask,
        max_length,
        beam_scorer,
        beam_kwargs,
        logits_processor,
        logits_process_kwargs,
        output_scores=False,
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
399
        model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
400
401
402
403
404
405
406
407
408
409
        output_generate = model.generate(
            input_ids,
            do_sample=False,
            max_length=max_length,
            output_scores=output_scores,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict_in_generate=return_dict_in_generate,
            **beam_kwargs,
            **logits_process_kwargs,
410
            **model_kwargs,
411
412
413
414
415
        )

        # beam_search does not automatically interleave `batch_size` dim for `num_beams`
        kwargs = {}
        if model.config.is_encoder_decoder:
416
            encoder_outputs, input_ids, attention_mask = self._get_encoder_outputs(
417
418
419
420
421
422
423
424
                model,
                input_ids,
                attention_mask,
                num_interleave=beam_scorer.num_beams,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )
            kwargs["encoder_outputs"] = encoder_outputs
425
426
        elif attention_mask is not None:
            attention_mask = attention_mask.repeat_interleave(beam_scorer.num_beams, dim=0)
427
428

        with torch.no_grad():
429
            model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
430
            output_beam_search = model.beam_search(
431
                input_ids.repeat_interleave(beam_scorer.num_beams, dim=0),
432
433
434
435
436
437
438
439
                beam_scorer,
                max_length=max_length,
                logits_processor=logits_processor,
                output_scores=output_scores,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict_in_generate=return_dict_in_generate,
                **kwargs,
440
                **model_kwargs,
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
            )
        return output_generate, output_beam_search

    def _beam_sample_generate(
        self,
        model,
        input_ids,
        attention_mask,
        max_length,
        beam_scorer,
        beam_kwargs,
        logits_warper,
        logits_warper_kwargs,
        output_scores=False,
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
        torch.manual_seed(0)
460
        model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
461
462
463
464
465
466
467
468
469
470
        output_generate = model.generate(
            input_ids,
            do_sample=True,
            max_length=max_length,
            output_scores=output_scores,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict_in_generate=return_dict_in_generate,
            **beam_kwargs,
            **logits_warper_kwargs,
471
            **model_kwargs,
472
        )
473
        # beam_search does not automatically interleave `batch_size` dim for `num_beams`
474
        torch.manual_seed(0)
475
476
477
478
479
480
        kwargs = {}
        if model.config.is_encoder_decoder:
            encoder_outputs, input_ids, attention_mask = self._get_encoder_outputs(
                model,
                input_ids,
                attention_mask,
481
                num_interleave=beam_scorer.num_beams,
482
483
484
485
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )
            kwargs["encoder_outputs"] = encoder_outputs
486
        elif attention_mask is not None:
487
            attention_mask = attention_mask.repeat_interleave(beam_scorer.num_beams, dim=0)
488

489
490
491
492
        # prevent flaky generation test failures
        logits_processor = LogitsProcessorList()
        logits_processor.append(InfNanRemoveLogitsProcessor())

493
        with torch.no_grad():
494
            model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
495
            output_beam_sample = model.beam_sample(
496
                input_ids.repeat_interleave(beam_scorer.num_beams, dim=0),
497
498
499
                beam_scorer,
                max_length=max_length,
                logits_warper=logits_warper,
500
                logits_processor=logits_processor,
501
502
503
504
505
                output_scores=output_scores,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict_in_generate=return_dict_in_generate,
                **kwargs,
506
                **model_kwargs,
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
            )

        return output_generate, output_beam_sample

    def _group_beam_search_generate(
        self,
        model,
        input_ids,
        attention_mask,
        max_length,
        beam_scorer,
        beam_kwargs,
        logits_processor,
        logits_process_kwargs,
        output_scores=False,
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
526
        model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
527
528
529
530
531
532
533
534
535
536
        output_generate = model.generate(
            input_ids,
            do_sample=False,
            max_length=max_length,
            output_scores=output_scores,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict_in_generate=return_dict_in_generate,
            **beam_kwargs,
            **logits_process_kwargs,
537
            **model_kwargs,
538
539
540
541
542
        )

        # group_beam_search does not automatically interleave `batch_size` dim for `num_beams`
        kwargs = {}
        if model.config.is_encoder_decoder:
543
            encoder_outputs, input_ids, attention_mask = self._get_encoder_outputs(
544
545
546
547
548
549
550
551
                model,
                input_ids,
                attention_mask,
                num_interleave=beam_scorer.num_beams,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )
            kwargs["encoder_outputs"] = encoder_outputs
552
553
        elif attention_mask is not None:
            attention_mask = attention_mask.repeat_interleave(beam_scorer.num_beams, dim=0)
554
555

        with torch.no_grad():
556
            model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
557
            output_group_beam_search = model.group_beam_search(
558
                input_ids.repeat_interleave(beam_scorer.num_beams, dim=0),
559
560
561
562
563
564
565
566
                beam_scorer,
                max_length=max_length,
                logits_processor=logits_processor,
                output_scores=output_scores,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict_in_generate=return_dict_in_generate,
                **kwargs,
567
                **model_kwargs,
568
569
570
            )
        return output_generate, output_group_beam_search

571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
    def _constrained_beam_search_generate(
        self,
        model,
        input_ids,
        attention_mask,
        max_length,
        constrained_beam_scorer,
        constraints,
        beam_kwargs,
        logits_processor,
        logits_process_kwargs,
        output_scores=False,
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
587
        model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
588
589
590
591
592
593
594
595
596
597
598
        output_generate = model.generate(
            input_ids,
            do_sample=False,
            max_length=max_length,
            output_scores=output_scores,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict_in_generate=return_dict_in_generate,
            constraints=constraints,
            **beam_kwargs,
            **logits_process_kwargs,
599
            **model_kwargs,
600
601
602
603
604
        )

        # group_beam_search does not automatically interleave `batch_size` dim for `num_beams`
        kwargs = {}
        if model.config.is_encoder_decoder:
605
            encoder_outputs, input_ids, attention_mask = self._get_encoder_outputs(
606
607
608
609
610
611
612
613
                model,
                input_ids,
                attention_mask,
                num_interleave=constrained_beam_scorer.num_beams,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )
            kwargs["encoder_outputs"] = encoder_outputs
614
615
        elif attention_mask is not None:
            attention_mask = attention_mask.repeat_interleave(constrained_beam_scorer.num_beams, dim=0)
616
617

        with torch.no_grad():
618
            model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
619
            output_group_beam_search = model.constrained_beam_search(
620
                input_ids.repeat_interleave(constrained_beam_scorer.num_beams, dim=0),
621
622
623
624
625
626
627
628
                constrained_beam_scorer,
                max_length=max_length,
                logits_processor=logits_processor,
                output_scores=output_scores,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict_in_generate=return_dict_in_generate,
                **kwargs,
629
                **model_kwargs,
630
631
632
            )
        return output_generate, output_group_beam_search

633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
    def _contrastive_generate(
        self,
        model,
        input_ids,
        attention_mask,
        max_length,
        output_scores=False,
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
        contrastive_search_kwargs = {
            "penalty_alpha": 0.6,
            "top_k": 5,
        }

        if model.config.is_encoder_decoder:
            max_length = 4
        logits_process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
            input_ids.shape[-1],
            eos_token_id=model.config.eos_token_id,
            forced_bos_token_id=model.config.forced_bos_token_id,
            forced_eos_token_id=model.config.forced_eos_token_id,
            max_length=max_length,
        )

        kwargs = {}
        model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
        output_generate = model.generate(
            input_ids,
            do_sample=False,
            num_beams=1,
            max_length=max_length,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            output_scores=output_scores,
            return_dict_in_generate=return_dict_in_generate,
            **logits_process_kwargs,
            **model_kwargs,
            **contrastive_search_kwargs,
        )

        if model.config.is_encoder_decoder:
            encoder_outputs, input_ids, attention_mask = self._get_encoder_outputs(
                model,
                input_ids,
                attention_mask,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )
            kwargs["encoder_outputs"] = encoder_outputs

        with torch.no_grad():
            model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
            stopping_criteria = StoppingCriteriaList([MaxLengthCriteria(max_length=max_length)])
            output_contrastive = model.contrastive_search(
                input_ids,
                stopping_criteria=stopping_criteria,
                logits_processor=logits_processor,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                output_scores=output_scores,
                return_dict_in_generate=return_dict_in_generate,
                **kwargs,
                **model_kwargs,
                **contrastive_search_kwargs,
            )
        return output_contrastive, output_generate

702
    def test_greedy_generate(self):
703
        # check `generate()` and `greedy_search()` are equal
704
705
        for model_class in self.all_generative_model_classes:
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
706
707
708
709
            # test old generation output for backwards compatibility
            model = model_class(config).to(torch_device).eval()
            output_greedy, output_generate = self._greedy_generate(
                model=model, input_ids=input_ids, attention_mask=attention_mask, max_length=max_length
710
            )
711
            self.assertListEqual(output_greedy.tolist(), output_generate.tolist())
712

713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
    def test_greedy_generate_dict_outputs(self):
        for model_class in self.all_generative_model_classes:
            # disable cache
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
            config.use_cache = False
            model = model_class(config).to(torch_device).eval()
            output_greedy, output_generate = self._greedy_generate(
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                max_length=max_length,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )
729
730

            if model.config.is_encoder_decoder:
731
732
733
734
735
                self.assertIsInstance(output_greedy, GreedySearchEncoderDecoderOutput)
                self.assertIsInstance(output_generate, GreedySearchEncoderDecoderOutput)
            else:
                self.assertIsInstance(output_greedy, GreedySearchDecoderOnlyOutput)
                self.assertIsInstance(output_generate, GreedySearchDecoderOnlyOutput)
736

737
738
739
740
741
742
743
744
745
746
747
            self.assertListEqual(output_generate.sequences.tolist(), output_greedy.sequences.tolist())

            for output in (output_greedy, output_generate):
                self._check_outputs(output, input_ids, model.config)

    def test_greedy_generate_dict_outputs_use_cache(self):
        for model_class in self.all_generative_model_classes:
            # enable cache
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()

            if not hasattr(config, "use_cache"):
748
                self.skipTest("This model doesn't support caching")
749
750

            config.use_cache = True
751
            config.is_decoder = True
752
753
754
755
            model = model_class(config).to(torch_device).eval()
            output_greedy, output_generate = self._greedy_generate(
                model=model,
                input_ids=input_ids,
756
757
                attention_mask=attention_mask,
                max_length=max_length,
758
759
760
761
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
762
            )
763

764
765
766
767
            self.assertListEqual(output_generate.sequences.tolist(), output_greedy.sequences.tolist())

            for output in (output_greedy, output_generate):
                self._check_outputs(output, input_ids, model.config, use_cache=True)
768
769
770
771

    def test_sample_generate(self):
        for model_class in self.all_generative_model_classes:
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
772
            model = model_class(config).to(torch_device).eval()
773
774
775
776

            if model.config.is_encoder_decoder:
                max_length = 4

777
778
779
780
781
782
783
            process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
                input_ids.shape[-1],
                model.config.eos_token_id,
                forced_bos_token_id=model.config.forced_bos_token_id,
                forced_eos_token_id=model.config.forced_eos_token_id,
                max_length=max_length,
            )
784
            logits_warper_kwargs, logits_warper = self._get_warper_and_kwargs(num_beams=2)
785

786
787
788
789
790
            # check `generate()` and `sample()` are equal
            output_sample, output_generate = self._sample_generate(
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
791
                max_length=max_length,
792
793
794
795
796
797
798
799
800
801
802
803
                num_return_sequences=1,
                logits_processor=logits_processor,
                logits_warper=logits_warper,
                logits_warper_kwargs=logits_warper_kwargs,
                process_kwargs=process_kwargs,
            )
            self.assertListEqual(output_sample.tolist(), output_generate.tolist())

            # check `generate()` and `sample()` yield equal results for `num_return_sequences`
            output_sample, output_generate = self._sample_generate(
                model=model,
                input_ids=input_ids,
804
                attention_mask=attention_mask,
805
806
807
808
809
810
                max_length=max_length,
                num_return_sequences=3,
                logits_processor=logits_processor,
                logits_warper=logits_warper,
                logits_warper_kwargs=logits_warper_kwargs,
                process_kwargs=process_kwargs,
811
            )
812
            self.assertListEqual(output_sample.tolist(), output_generate.tolist())
813

814
815
816
817
818
819
    def test_sample_generate_dict_output(self):
        for model_class in self.all_generative_model_classes:
            # disable cache
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
            config.use_cache = False
            model = model_class(config).to(torch_device).eval()
820
821
822
            if model.config.is_encoder_decoder:
                max_length = 4

823
            process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
824
825
826
827
828
                input_ids.shape[-1],
                model.config.eos_token_id,
                forced_bos_token_id=model.config.forced_bos_token_id,
                forced_eos_token_id=model.config.forced_eos_token_id,
                max_length=max_length,
829
830
            )
            logits_warper_kwargs, logits_warper = self._get_warper_and_kwargs(num_beams=1)
831

832
833
834
            output_sample, output_generate = self._sample_generate(
                model=model,
                input_ids=input_ids,
835
                attention_mask=attention_mask,
836
837
838
839
840
841
842
843
844
845
                max_length=max_length,
                num_return_sequences=2,
                logits_processor=logits_processor,
                logits_warper=logits_warper,
                logits_warper_kwargs=logits_warper_kwargs,
                process_kwargs=process_kwargs,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
846
847
848
            )

            if model.config.is_encoder_decoder:
849
850
                self.assertIsInstance(output_sample, SampleEncoderDecoderOutput)
                self.assertIsInstance(output_generate, SampleEncoderDecoderOutput)
851
            else:
852
853
854
855
856
857
858
                self.assertIsInstance(output_sample, SampleDecoderOnlyOutput)
                self.assertIsInstance(output_generate, SampleDecoderOnlyOutput)

            self.assertListEqual(output_generate.sequences.tolist(), output_sample.sequences.tolist())

            for output in (output_sample, output_generate):
                self._check_outputs(output, input_ids, model.config, num_return_sequences=2)
859
860
861
862

    def test_beam_search_generate(self):
        for model_class in self.all_generative_model_classes:
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
863
864
865
866
867

            # It is important set set the eos_token_id to None to ensure that no sequences
            # shorter than `max_length` can be generated which could lead to flaky circle ci
            # failures if the top `num_return_sequences` beams are all shorter than the longest beam
            config.eos_token_id = None
868
            config.forced_eos_token_id = None
869

870
            model = model_class(config).to(torch_device).eval()
871
872
            if model.config.is_encoder_decoder:
                max_length = 4
873
874

            logits_process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
875
876
877
878
879
                input_ids.shape[-1],
                config.eos_token_id,
                config.forced_bos_token_id,
                config.forced_eos_token_id,
                max_length,
880
881
            )
            beam_kwargs, beam_scorer = self._get_beam_scorer_and_kwargs(input_ids.shape[0], max_length)
882
883
884
885
886

            # check `generate()` and `beam_search()` are equal
            output_generate, output_beam_search = self._beam_search_generate(
                model=model,
                input_ids=input_ids,
887
888
                attention_mask=attention_mask,
                max_length=max_length,
889
890
891
892
                beam_scorer=beam_scorer,
                beam_kwargs=beam_kwargs,
                logits_process_kwargs=logits_process_kwargs,
                logits_processor=logits_processor,
893
            )
894

895
            self.assertListEqual(output_generate.tolist(), output_beam_search.tolist())
896
897
898

            if model.config.is_encoder_decoder:
                max_length = 4
899
            beam_kwargs, beam_scorer = self._get_beam_scorer_and_kwargs(input_ids.shape[0], max_length)
900

901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
            output_generate, output_beam_search = self._beam_search_generate(
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                max_length=max_length,
                beam_scorer=beam_scorer,
                beam_kwargs=beam_kwargs,
                logits_process_kwargs=logits_process_kwargs,
                logits_processor=logits_processor,
            )
            self.assertListEqual(output_generate.tolist(), output_beam_search.tolist())

    def test_beam_search_generate_dict_output(self):
        for model_class in self.all_generative_model_classes:
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
916
917

            # disable cache
918
            config.use_cache = False
919
920
921
922
923

            # It is important set set the eos_token_id to None to ensure that no sequences
            # shorter than `max_length` can be generated which could lead to flaky circle ci
            # failures if the top `num_return_sequences` beams are all shorter than the longest beam
            config.eos_token_id = None
924
            config.forced_eos_token_id = None
925

926
927
928
            model = model_class(config).to(torch_device).eval()
            if model.config.is_encoder_decoder:
                max_length = 4
929
930
931
932
933
934
935
936

            logits_process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
                input_ids.shape[-1],
                config.eos_token_id,
                config.forced_bos_token_id,
                config.forced_eos_token_id,
                max_length,
            )
937
938
939
940
            beam_kwargs, beam_scorer = self._get_beam_scorer_and_kwargs(input_ids.shape[0], max_length)
            output_generate, output_beam_search = self._beam_search_generate(
                model=model,
                input_ids=input_ids,
941
942
                attention_mask=attention_mask,
                max_length=max_length,
943
944
945
946
947
948
949
950
                beam_scorer=beam_scorer,
                beam_kwargs=beam_kwargs,
                logits_process_kwargs=logits_process_kwargs,
                logits_processor=logits_processor,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
951
952
            )
            if model.config.is_encoder_decoder:
953
954
                self.assertIsInstance(output_beam_search, BeamSearchEncoderDecoderOutput)
                self.assertIsInstance(output_generate, BeamSearchEncoderDecoderOutput)
955
            else:
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
                self.assertIsInstance(output_beam_search, BeamSearchDecoderOnlyOutput)
                self.assertIsInstance(output_generate, BeamSearchDecoderOnlyOutput)

            self.assertListEqual(output_generate.sequences.tolist(), output_beam_search.sequences.tolist())
            self.assertTrue(
                torch.allclose(output_generate["sequences_scores"], output_beam_search["sequences_scores"], atol=1e-3)
            )
            self.assertTrue(output_generate["sequences_scores"].shape == (output_generate["sequences"].shape[0],))
            self.assertTrue((output_generate["sequences_scores"] < 0).all().item())

            for output in (output_beam_search, output_generate):
                self._check_outputs(output, input_ids, model.config, num_return_sequences=beam_scorer.num_beams)

    def test_beam_search_generate_dict_outputs_use_cache(self):
        for model_class in self.all_generative_model_classes:
            # enable cache
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()

974
975
976
977
            # It is important set set the eos_token_id to None to ensure that no sequences
            # shorter than `max_length` can be generated which could lead to flaky circle ci
            # failures if the top `num_return_sequences` beams are all shorter than the longest beam
            config.eos_token_id = None
978
            config.forced_eos_token_id = None
979

980
            if not hasattr(config, "use_cache"):
981
                self.skipTest("This model doesn't support caching")
982
983

            model = model_class(config).to(torch_device).eval()
984
985
            if model.config.is_encoder_decoder:
                max_length = 4
986
987

            logits_process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
988
989
990
991
992
                input_ids.shape[-1],
                config.eos_token_id,
                config.forced_bos_token_id,
                config.forced_eos_token_id,
                max_length,
993
994
995
996
997
            )

            beam_kwargs, beam_scorer = self._get_beam_scorer_and_kwargs(input_ids.shape[0], max_length)

            config.use_cache = True
998
            config.is_decoder = True
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
            model = model_class(config).to(torch_device).eval()
            output_beam, output_generate = self._beam_search_generate(
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                max_length=max_length,
                beam_scorer=beam_scorer,
                beam_kwargs=beam_kwargs,
                logits_process_kwargs=logits_process_kwargs,
                logits_processor=logits_processor,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )

            self.assertListEqual(output_generate.sequences.tolist(), output_beam.sequences.tolist())

            for output in (output_beam, output_generate):
                self._check_outputs(
                    output, input_ids, model.config, use_cache=True, num_return_sequences=beam_scorer.num_beams
1020
1021
                )

1022
    @require_accelerate
1023
    @require_torch_multi_accelerator
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
    def test_model_parallel_beam_search(self):
        for model_class in self.all_generative_model_classes:
            if model_class._no_split_modules is None:
                continue

            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()

            model = model_class(config).eval()
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.cpu().save_pretrained(tmp_dir)
                new_model = model_class.from_pretrained(tmp_dir, device_map="auto")

                new_model.generate(
                    input_ids,
                    attention_mask=attention_mask,
                    max_length=max_length,
                    num_beams=2,
                )

1043
1044
1045
    def test_beam_sample_generate(self):
        for model_class in self.all_generative_model_classes:
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
1046
1047
1048
1049
1050

            # It is important set set the eos_token_id to None to ensure that no sequences
            # shorter than `max_length` can be generated which could lead to flaky circle ci
            # failures if the top `num_return_sequences` beams are all shorter than the longest beam
            config.eos_token_id = None
1051
            config.forced_eos_token_id = None
1052

1053
1054
            logits_warper_kwargs, logits_warper = self._get_warper_and_kwargs(num_beams=1)

1055
            model = model_class(config).to(torch_device).eval()
1056
1057
1058
1059

            # check `generate()` and `beam_search()` are equal
            if model.config.is_encoder_decoder:
                max_length = 4
1060
            beam_kwargs, beam_scorer = self._get_beam_scorer_and_kwargs(input_ids.shape[0], max_length)
1061
1062
1063
1064

            output_generate, output_beam_sample = self._beam_sample_generate(
                model=model,
                input_ids=input_ids,
1065
1066
                attention_mask=attention_mask,
                max_length=max_length,
1067
1068
1069
1070
                beam_scorer=beam_scorer,
                beam_kwargs=beam_kwargs,
                logits_warper=logits_warper,
                logits_warper_kwargs=logits_warper_kwargs,
1071
            )
1072
1073
1074
1075
1076
            self.assertListEqual(output_generate.tolist(), output_beam_sample.tolist())

    def test_beam_sample_generate_dict_output(self):
        for model_class in self.all_generative_model_classes:
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
1077
1078

            # disable cache
1079
            config.use_cache = False
1080
1081
1082
1083
1084

            # It is important set set the eos_token_id to None to ensure that no sequences
            # shorter than `max_length` can be generated which could lead to flaky circle ci
            # failures if the top `num_return_sequences` beams are all shorter than the longest beam
            config.eos_token_id = None
1085
            config.forced_eos_token_id = None
1086

1087
1088
1089
            model = model_class(config).to(torch_device).eval()
            logits_warper_kwargs, logits_warper = self._get_warper_and_kwargs(num_beams=1)

1090
            if model.config.is_encoder_decoder:
1091
                max_length = 4
1092
            beam_kwargs, beam_scorer = self._get_beam_scorer_and_kwargs(input_ids.shape[0], max_length)
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109

            output_beam_sample, output_generate = self._beam_sample_generate(
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                max_length=max_length,
                beam_scorer=beam_scorer,
                beam_kwargs=beam_kwargs,
                logits_warper=logits_warper,
                logits_warper_kwargs=logits_warper_kwargs,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )

            if model.config.is_encoder_decoder:
1110
1111
                self.assertIsInstance(output_beam_sample, BeamSampleEncoderDecoderOutput)
                self.assertIsInstance(output_generate, BeamSampleEncoderDecoderOutput)
1112
            else:
1113
1114
                self.assertIsInstance(output_beam_sample, BeamSampleDecoderOnlyOutput)
                self.assertIsInstance(output_generate, BeamSampleDecoderOnlyOutput)
1115
1116
1117
1118
1119
1120
1121
1122
1123

            self.assertListEqual(output_generate.sequences.tolist(), output_beam_sample.sequences.tolist())
            self.assertTrue(
                torch.allclose(output_generate["sequences_scores"], output_beam_sample["sequences_scores"], atol=1e-3)
            )
            self.assertTrue(output_generate["sequences_scores"].shape == (output_generate["sequences"].shape[0],))
            self.assertTrue((output_generate["sequences_scores"] < 0).all().item())

            for output in (output_beam_sample, output_generate):
1124
                self._check_outputs(output, input_ids, model.config, num_return_sequences=beam_scorer.num_beams)
1125

1126
1127
    def test_generate_without_input_ids(self):
        config, _, _, max_length = self._get_input_ids_and_config()
1128

1129
1130
1131
        # if no bos token id => cannot generate from None
        if config.bos_token_id is None:
            return
1132

1133
1134
1135
        for model_class in self.all_generative_model_classes:
            model = model_class(config).to(torch_device)
            model.eval()
1136

1137
            output_ids_generate = model.generate(do_sample=False, max_length=max_length, remove_invalid_values=True)
1138
            self.assertIsNotNone(output_ids_generate)
1139

1140
1141
1142
1143
    def test_group_beam_search_generate(self):
        for model_class in self.all_generative_model_classes:
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()

1144
1145
1146
1147
            # It is important set set the eos_token_id to None to ensure that no sequences
            # shorter than `max_length` can be generated which could lead to flaky circle ci
            # failures if the top `num_return_sequences` beams are all shorter than the longest beam
            config.eos_token_id = None
1148
1149
1150
1151
1152
            config.forced_eos_token_id = None

            model = model_class(config).to(torch_device).eval()
            if model.config.is_encoder_decoder:
                max_length = 4
1153

1154
            logits_process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
1155
1156
1157
1158
1159
1160
                input_ids.shape[-1],
                config.eos_token_id,
                config.forced_bos_token_id,
                config.forced_eos_token_id,
                max_length,
                diversity_penalty=2.0,
1161
1162
1163
1164
            )

            # check `generate()` and `group_beam_search()` are equal
            beam_kwargs, beam_scorer = self._get_diverse_beam_scorer_and_kwargs(input_ids.shape[0], max_length)
1165
1166
1167
            output_generate, output_group_beam_search = self._group_beam_search_generate(
                model=model,
                input_ids=input_ids,
1168
1169
                attention_mask=attention_mask,
                max_length=max_length,
1170
1171
1172
1173
                beam_scorer=beam_scorer,
                beam_kwargs=beam_kwargs,
                logits_processor=logits_processor,
                logits_process_kwargs=logits_process_kwargs,
1174
            )
1175
            self.assertListEqual(output_generate.tolist(), output_group_beam_search.tolist())
1176
1177
1178
1179
1180
1181
1182
1183

            # check `generate()` and `group_beam_search()` are equal for `num_return_sequences`
            num_return_sequences = 2
            if model.config.is_encoder_decoder:
                max_length = 4
            beam_kwargs, beam_scorer = self._get_diverse_beam_scorer_and_kwargs(
                input_ids.shape[0], max_length, num_return_sequences=num_return_sequences
            )
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
            output_generate, output_group_beam_search = self._group_beam_search_generate(
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                max_length=max_length,
                beam_scorer=beam_scorer,
                beam_kwargs=beam_kwargs,
                logits_processor=logits_processor,
                logits_process_kwargs=logits_process_kwargs,
            )
            self.assertListEqual(output_generate.tolist(), output_group_beam_search.tolist())
1195

1196
1197
1198
1199
    def test_group_beam_search_generate_dict_output(self):
        for model_class in self.all_generative_model_classes:
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
            config.use_cache = False
1200
1201
1202
1203
1204

            # It is important set set the eos_token_id to None to ensure that no sequences
            # shorter than `max_length` can be generated which could lead to flaky circle ci
            # failures if the top `num_return_sequences` beams are all shorter than the longest beam
            config.eos_token_id = None
1205
            config.forced_eos_token_id = None
1206

1207
            model = model_class(config).to(torch_device).eval()
1208
1209
            if model.config.is_encoder_decoder:
                max_length = 4
1210
1211

            logits_process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
1212
1213
1214
1215
1216
1217
                input_ids.shape[-1],
                config.eos_token_id,
                config.forced_bos_token_id,
                config.forced_eos_token_id,
                max_length,
                diversity_penalty=2.0,
1218
1219
1220
1221
1222
1223
1224
1225
1226
            )

            num_return_sequences = 1
            beam_kwargs, beam_scorer = self._get_diverse_beam_scorer_and_kwargs(
                input_ids.shape[0], max_length, num_return_sequences=num_return_sequences
            )
            output_generate, output_group_beam_search = self._group_beam_search_generate(
                model=model,
                input_ids=input_ids,
1227
1228
                attention_mask=attention_mask,
                max_length=max_length,
1229
1230
1231
1232
1233
1234
1235
1236
                beam_scorer=beam_scorer,
                beam_kwargs=beam_kwargs,
                logits_processor=logits_processor,
                logits_process_kwargs=logits_process_kwargs,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
1237
1238
            )
            if model.config.is_encoder_decoder:
1239
1240
                self.assertIsInstance(output_group_beam_search, BeamSearchEncoderDecoderOutput)
                self.assertIsInstance(output_generate, BeamSearchEncoderDecoderOutput)
1241
            else:
1242
1243
1244
1245
1246
1247
1248
                self.assertIsInstance(output_group_beam_search, BeamSearchDecoderOnlyOutput)
                self.assertIsInstance(output_generate, BeamSearchDecoderOnlyOutput)

            self.assertListEqual(output_generate.sequences.tolist(), output_group_beam_search.sequences.tolist())
            self.assertTrue(
                torch.allclose(
                    output_generate["sequences_scores"], output_group_beam_search["sequences_scores"], atol=1e-3
1249
                )
1250
1251
1252
1253
1254
1255
1256
1257
1258
            )
            self.assertTrue(output_generate["sequences_scores"].shape == (output_generate["sequences"].shape[0],))
            self.assertTrue((output_generate["sequences_scores"] < 0).all().item())

            for output in (output_group_beam_search, output_generate):
                self._check_outputs(
                    output, input_ids, model.config, num_return_sequences=num_return_sequences * beam_scorer.num_beams
                )

1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
    def test_constrained_beam_search_generate(self):
        for model_class in self.all_generative_model_classes:
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()

            # It is important set set the eos_token_id to None to ensure that no sequences
            # shorter than `max_length` can be generated which could lead to flaky circle ci
            # failures if the top `num_return_sequences` beams are all shorter than the longest beam
            config.eos_token_id = None
            config.forced_eos_token_id = None

            model = model_class(config).to(torch_device).eval()
            max_length = 20

            logits_process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
                input_ids.shape[-1],
                config.eos_token_id,
                config.forced_bos_token_id,
                config.forced_eos_token_id,
                max_length,
            )

            # check `generate()` and `constrained_beam_search()` are equal
            # Sample constraints
1282
1283
            min_id = 3
            max_id = config.vocab_size
1284

1285
            force_tokens = torch.randint(min_id, max_id, (1, 2)).tolist()[0]
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
            constraints = [
                PhrasalConstraint(force_tokens),
            ]

            beam_kwargs, beam_scorer = self._get_constrained_beam_scorer_and_kwargs(
                input_ids.shape[0], max_length, constraints, num_return_sequences=1
            )
            output_generate, output_beam_search = self._constrained_beam_search_generate(
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                max_length=max_length,
                constrained_beam_scorer=beam_scorer,
                constraints=constraints,
                beam_kwargs=beam_kwargs,
                logits_processor=logits_processor,
                logits_process_kwargs=logits_process_kwargs,
            )
            self.assertListEqual(output_generate.tolist(), output_beam_search.tolist())
            for generation_output in output_generate:
                self._check_sequence_inside_sequence(force_tokens, generation_output)

            # check `generate()` and `constrained_beam_search()` are equal for `num_return_sequences`
            # Sample constraints
1310
            force_tokens = torch.randint(min_id, max_id, (1, 2)).tolist()[0]
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
            constraints = [
                PhrasalConstraint(force_tokens),
            ]

            num_return_sequences = 2
            max_length = 20

            beam_kwargs, beam_scorer = self._get_constrained_beam_scorer_and_kwargs(
                input_ids.shape[0], max_length, constraints, num_return_sequences=num_return_sequences
            )

            output_generate, output_beam_search = self._constrained_beam_search_generate(
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                max_length=max_length,
                constrained_beam_scorer=beam_scorer,
                constraints=constraints,
                beam_kwargs=beam_kwargs,
                logits_processor=logits_processor,
                logits_process_kwargs=logits_process_kwargs,
            )
            self.assertListEqual(output_generate.tolist(), output_beam_search.tolist())

            for generation_output in output_generate:
                self._check_sequence_inside_sequence(force_tokens, generation_output)

    def test_constrained_beam_search_generate_dict_output(self):
        for model_class in self.all_generative_model_classes:
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()

            # disable cache
            config.use_cache = False

            # It is important set set the eos_token_id to None to ensure that no sequences
            # shorter than `max_length` can be generated which could lead to flaky circle ci
            # failures if the top `num_return_sequences` beams are all shorter than the longest beam
            config.eos_token_id = None
            config.forced_eos_token_id = None

            model = model_class(config).to(torch_device).eval()
            if model.config.is_encoder_decoder:
                max_length = 20

            logits_process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
                input_ids.shape[-1],
                config.eos_token_id,
                config.forced_bos_token_id,
                config.forced_eos_token_id,
                max_length,
            )

            # Sample constraints
1364
1365
            min_id = 3
            max_id = model.config.vocab_size
1366
            force_tokens = torch.randint(min_id, max_id, (1, 2)).tolist()[0]
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
            constraints = [
                PhrasalConstraint(force_tokens),
            ]

            beam_kwargs, beam_scorer = self._get_constrained_beam_scorer_and_kwargs(
                input_ids.shape[0], max_length, constraints, num_return_sequences=1
            )
            output_generate, output_beam_search = self._constrained_beam_search_generate(
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                max_length=max_length,
                constrained_beam_scorer=beam_scorer,
                constraints=constraints,
                beam_kwargs=beam_kwargs,
                logits_processor=logits_processor,
                logits_process_kwargs=logits_process_kwargs,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )

            if model.config.is_encoder_decoder:
                self.assertIsInstance(output_beam_search, BeamSearchEncoderDecoderOutput)
                self.assertIsInstance(output_generate, BeamSearchEncoderDecoderOutput)
            else:
                self.assertIsInstance(output_beam_search, BeamSearchDecoderOnlyOutput)
                self.assertIsInstance(output_generate, BeamSearchDecoderOnlyOutput)

            self.assertListEqual(output_generate.sequences.tolist(), output_beam_search.sequences.tolist())
            self.assertTrue(
                torch.allclose(output_generate["sequences_scores"], output_beam_search["sequences_scores"], atol=1e-3)
            )
            self.assertTrue(output_generate["sequences_scores"].shape == (output_generate["sequences"].shape[0],))
            self.assertTrue((output_generate["sequences_scores"] < 0).all().item())

            for output in (output_beam_search, output_generate):
                self._check_outputs(output, input_ids, model.config, num_return_sequences=beam_scorer.num_beams)

1407
1408
1409
1410
    def test_contrastive_generate(self):
        # check `generate()` and `contrastive_search()` are equal
        for model_class in self.all_generative_model_classes:
            # won't fix: FSMT and Reformer have a different cache variable type (and format).
1411
            if any(model_name in model_class.__name__.lower() for model_name in ["fsmt", "reformer"]):
1412
                self.skipTest("Won't fix: old model with different cache format")
1413
1414
1415
1416
1417

            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()

            # NOTE: contrastive search only works with cache on at the moment.
            if not hasattr(config, "use_cache"):
1418
                self.skipTest("This model doesn't support caching")
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
            config.use_cache = True
            config.is_decoder = True

            # test old generation output for backwards compatibility
            model = model_class(config).to(torch_device).eval()
            output_contrastive, output_generate = self._contrastive_generate(
                model=model, input_ids=input_ids, attention_mask=attention_mask, max_length=max_length
            )
            self.assertListEqual(output_contrastive.tolist(), output_generate.tolist())

    def test_contrastive_generate_dict_outputs_use_cache(self):
        for model_class in self.all_generative_model_classes:
            # won't fix: FSMT and Reformer have a different cache variable type (and format).
1432
            if any(model_name in model_class.__name__.lower() for model_name in ["fsmt", "reformer"]):
1433
                self.skipTest("Won't fix: old model with different cache format")
1434
1435
1436
1437
1438
1439

            # enable cache
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()

            # NOTE: contrastive search only works with cache on at the moment.
            if not hasattr(config, "use_cache"):
1440
                self.skipTest("This model doesn't support caching")
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
            config.use_cache = True
            config.is_decoder = True

            model = model_class(config).to(torch_device).eval()
            output_contrastive, output_generate = self._contrastive_generate(
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                max_length=max_length,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )

            self.assertListEqual(output_generate.sequences.tolist(), output_contrastive.sequences.tolist())

            for output in (output_contrastive, output_generate):
                self._check_outputs(output, input_ids, model.config, use_cache=True)

1461
1462
1463
    def test_contrastive_generate_low_memory(self):
        # Check that choosing 'low_memory' does not change the model output
        for model_class in self.all_generative_model_classes:
1464
1465
1466
1467
            if any(model_name in model_class.__name__.lower() for model_name in ["fsmt", "reformer", "speech2text"]):
                self.skipTest("Won't fix: old model with different cache format")
            if any(model_name in model_class.__name__.lower() for model_name in ["gptbigcode"]):
                self.skipTest("TODO: fix me")
1468
1469
1470
1471
1472

            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config(batch_size=1)

            # NOTE: contrastive search only works with cache on at the moment.
            if not hasattr(config, "use_cache"):
1473
                self.skipTest("This model doesn't support caching")
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499

            config.use_cache = True
            config.is_decoder = True

            # test output equality of low versus high memory
            model = model_class(config).to(torch_device).eval()

            low_output = model.generate(
                input_ids,
                top_k=4,
                penalty_alpha=0.6,
                low_memory=True,
                max_length=max_length,
                attention_mask=attention_mask,
            )

            high_output = model.generate(
                input_ids,
                top_k=4,
                penalty_alpha=0.6,
                low_memory=False,
                max_length=max_length,
                attention_mask=attention_mask,
            )
            self.assertListEqual(low_output.tolist(), high_output.tolist())

1500
    @is_flaky()  # Read NOTE (1) below. If there are API issues, all attempts will fail.
1501
    def test_assisted_decoding_matches_greedy_search(self):
1502
        # This test ensures that the assisted generation does not introduce output changes over greedy search.
1503
1504
1505
1506
1507
        # NOTE (1): The sentence above is true most of the time, there is a tiny difference in the logits due to matmul
        # shape differences -- and it may result in a different output. The input shape difference happens in the
        # main model, that runs the forward pass with several candidates at once (as opposed to generating one token at
        # a time). See https://github.com/huggingface/transformers/issues/25420#issuecomment-1775317535 for more info.
        # NOTE (2): It breaks the pattern in the tests above, for multiple reasons:
1508
        # - assisted_decoding, contrarily to the other methods, can't be called on its own (e.g. needs to
1509
        # prepare the assistant encoder outputs in the main generate body);
1510
1511
        # - assisted_decoding does not support `use_cache = False`
        # - assisted_decoding does not support `batch_size > 1`
1512
1513
1514

        for model_class in self.all_generative_model_classes:
            if any(model_name in model_class.__name__.lower() for model_name in ["fsmt", "reformer"]):
1515
                self.skipTest("Won't fix: old model with different cache format")
1516
1517
            if any(
                model_name in model_class.__name__.lower()
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
                for model_name in [
                    "bigbirdpegasus",
                    "led",
                    "mega",
                    "speech2text",
                    "git",
                    "prophetnet",
                    "seamlessm4t",
                    "clvp",
                ]
1528
            ):
1529
                self.skipTest("May fix in the future: need model-specific fixes")
1530

1531
1532
            # enable cache
            config, input_ids, attention_mask, _ = self._get_input_ids_and_config(batch_size=1)
1533

1534
1535
1536
            # NOTE: assisted generation only works with cache on at the moment.
            if not hasattr(config, "use_cache"):
                self.skipTest("This model doesn't support caching")
1537

1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
            config.use_cache = True
            config.is_decoder = True
            model = model_class(config).to(torch_device).eval()
            # Sets assisted generation arguments such that:
            # a) no EOS is generated, to ensure generation doesn't break early
            # b) the assistant model always generates two tokens when it is called, to ensure the input preparation of
            #    the assistant model is correct
            # c) there are at least two forward passes in the main model, to ensure the input preparation of
            #    the main model is correct
            generation_kwargs = {
                "eos_token_id": -1,  # see a)
                "max_new_tokens": 4,  # see c)
                "num_beams": 1,
                "do_sample": False,
                "output_scores": True,
                "output_hidden_states": True,
                "output_attentions": True,
                "return_dict_in_generate": True,
            }
            output_greedy = model.generate(input_ids, attention_mask=attention_mask, **generation_kwargs)

            assistant_model = model
            assistant_model.generation_config.num_assistant_tokens = 2  # see b)
            assistant_model.generation_config.num_assistant_tokens_schedule = "constant"  # see b)
            generation_kwargs.update({"assistant_model": assistant_model})
            output_assisted = model.generate(input_ids, attention_mask=attention_mask, **generation_kwargs)

            # The two outputs must match and their shape must be as expected
            self.assertListEqual(output_greedy.sequences.tolist(), output_assisted.sequences.tolist())
            for output in (output_greedy, output_assisted):
                self._check_outputs(output, input_ids, model.config, use_cache=True)
1569

1570
    def test_assisted_decoding_sample(self):
1571
1572
1573
        # In this test we don't check assisted vs non-assisted output -- seeded assisted decoding with sample will not
        # match sample for the same seed, as the forward pass does not return the exact same logits (due to matmul with
        # different shapes, see https://github.com/huggingface/transformers/issues/25420#issuecomment-1775317535).
1574
1575
        for model_class in self.all_generative_model_classes:
            if any(model_name in model_class.__name__.lower() for model_name in ["fsmt", "reformer"]):
1576
                self.skipTest("Won't fix: old model with different cache format")
1577
1578
            if any(
                model_name in model_class.__name__.lower()
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
                for model_name in [
                    "bigbirdpegasus",
                    "led",
                    "mega",
                    "speech2text",
                    "git",
                    "prophetnet",
                    "seamlessm4t",
                    "clvp",
                ]
1589
            ):
1590
                self.skipTest("May fix in the future: need model-specific fixes")
1591
1592

            # enable cache
1593
            config, input_ids, attention_mask, _ = self._get_input_ids_and_config(batch_size=1)
1594
1595
1596

            # NOTE: assisted generation only works with cache on at the moment.
            if not hasattr(config, "use_cache"):
1597
                self.skipTest("This model doesn't support caching")
1598
1599
1600
1601

            config.use_cache = True
            config.is_decoder = True
            model = model_class(config).to(torch_device).eval()
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
            # Sets assisted generation arguments such that:
            # a) no EOS is generated, to ensure generation doesn't break early
            # b) the assistant model always generates two tokens when it is called, to ensure the input preparation of
            #    the assistant model is correct
            # c) there are at least two forward passes in the main model, to ensure the input preparation of
            #    the main model is correct
            assistant_model = model
            assistant_model.generation_config.num_assistant_tokens = 2  # see b)
            assistant_model.generation_config.num_assistant_tokens_schedule = "constant"  # see b)
            generation_kwargs = {
                "eos_token_id": -1,  # see a)
                "max_new_tokens": 4,  # see c)
                "num_beams": 1,
                "do_sample": True,
                "assistant_model": assistant_model,
                "output_scores": True,
                "output_hidden_states": True,
                "output_attentions": True,
                "return_dict_in_generate": True,
            }
            output_assisted = model.generate(input_ids, attention_mask=attention_mask, **generation_kwargs)
1623
1624
1625

            self._check_outputs(output_assisted, input_ids, model.config, use_cache=True)

1626
1627
1628
1629
1630
1631
1632
1633
    def test_generate_with_head_masking(self):
        """Test designed for encoder-decoder models to ensure the attention head masking is used."""
        attention_names = ["encoder_attentions", "decoder_attentions", "cross_attentions"]
        for model_class in self.all_generative_model_classes:
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
            # We want to test only encoder-decoder models
            if not config.is_encoder_decoder:
                continue
Joao Gante's avatar
Joao Gante committed
1634
            model = model_class(config).to(torch_device)
1635
1636

            head_masking = {
1637
1638
1639
1640
1641
1642
1643
                "head_mask": torch.zeros(config.encoder_layers, config.encoder_attention_heads, device=torch_device),
                "decoder_head_mask": torch.zeros(
                    config.decoder_layers, config.decoder_attention_heads, device=torch_device
                ),
                "cross_attn_head_mask": torch.zeros(
                    config.decoder_layers, config.decoder_attention_heads, device=torch_device
                ),
1644
1645
1646
1647
            }

            signature = inspect.signature(model.forward)
            # We want to test only models where encoder/decoder head masking is implemented
1648
            if not set(head_masking.keys()) < {*signature.parameters.keys()}:
1649
1650
1651
1652
1653
                continue

            for attn_name, (name, mask) in zip(attention_names, head_masking.items()):
                out = model.generate(
                    input_ids,
1654
                    attention_mask=attention_mask,
1655
1656
1657
                    num_beams=1,
                    output_attentions=True,
                    return_dict_in_generate=True,
1658
                    remove_invalid_values=True,
1659
1660
1661
1662
1663
1664
                    **{name: mask},
                )
                # We check the state of decoder_attentions and cross_attentions just from the last step
                attn_weights = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1]
                self.assertEqual(sum([w.sum().item() for w in attn_weights]), 0.0)

1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
    def test_left_padding_compatibility(self):
        # The check done in this test is fairly difficult -- depending on the model architecture, passing the right
        # position index for the position embeddings can still result in a different output, due to numerical masking.
        # On the other hand, for some types of position embeddings, an incorrect position index can have a minimal
        # impact on the output.
        # There are two tricks employed to check whether left-padding compatibility is in place:
        # 1 - To reduce the negative impact of the numerical attention mask on a correct position index, we set the
        # padding size to 1.
        # 2 - To reduce the chance of false positives (i.e. passing when it should be failing), we run the check
        # multiple times with random inputs, and it has to pass with all of them.
        # NOTE: because of 2), there is some chance of false positives in this test.

        for model_class in self.all_generative_model_classes:
            config, _, _, _ = self._get_input_ids_and_config()
            if config.is_encoder_decoder:
                continue  # skip for encoder-decoder models -- they don't need left-padding compatibility
            model = model_class(config).to(torch_device).eval()
            signature = inspect.signature(model.forward).parameters.keys()

            no_failures = True
            for _ in range(10):  # there may be false positives with 10 runs, we rely on the CI to catch the flakiness
                _, input_ids, attention_mask, _ = self._get_input_ids_and_config()
                model_kwargs = {"input_ids": input_ids, "attention_mask": attention_mask}
                if "position_ids" in signature:
                    position_ids = torch.cumsum(attention_mask, dim=-1) - 1
                    position_ids.masked_fill_(attention_mask == 0, 1)
                    model_kwargs["position_ids"] = position_ids
                next_logits_wo_padding = model(**model_kwargs).logits[:, -1, :]

                pad_size = (input_ids.shape[0], 1)
                padding = torch.ones(pad_size, dtype=input_ids.dtype, device=torch_device) * config.pad_token_id
                padded_input_ids = torch.cat((padding, input_ids), dim=1)
                padded_attention_mask = torch.cat((torch.zeros_like(padding), attention_mask), dim=1)
                model_kwargs = {"input_ids": padded_input_ids, "attention_mask": padded_attention_mask}
                if "position_ids" in signature:
                    position_ids = torch.cumsum(padded_attention_mask, dim=-1) - 1
                    position_ids.masked_fill_(padded_attention_mask == 0, 1)
                    model_kwargs["position_ids"] = position_ids
                next_logits_with_padding = model(**model_kwargs).logits[:, -1, :]
1704
                if not torch.allclose(next_logits_wo_padding, next_logits_with_padding, atol=1e-7):
1705
1706
1707
1708
1709
                    no_failures = False
                    break

            self.assertTrue(no_failures)

1710
1711
1712
1713
1714
1715
1716
1717
    def test_past_key_values_format(self):
        # Test that the KV cache is formatted correctly. Exceptions need to explicitly overwrite this test. Having a
        # standard KV cache format is important for a consistent API (and for advanced generation methods).
        for model_class in self.all_generative_model_classes:
            config, inputs = self.model_tester.prepare_config_and_inputs_for_common()

            # If it doesn't support cache, pass the test
            if not hasattr(config, "use_cache"):
1718
                self.skipTest("This model doesn't support caching")
1719
1720
1721
1722
1723
1724
1725
1726

            model = model_class(config).to(torch_device)
            if "use_cache" not in inputs:
                inputs["use_cache"] = True
            outputs = model(**inputs)

            # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format)
            if "past_key_values" not in outputs:
1727
                self.skipTest("This model doesn't return `past_key_values`")
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780

            num_hidden_layers = (
                getattr(config, "decoder_layers", None)
                or getattr(config, "num_decoder_layers", None)
                or config.num_hidden_layers
            )
            num_attention_heads = getattr(config, "decoder_attention_heads", config.num_attention_heads)
            embed_dim = getattr(config, "d_model", config.hidden_size)
            per_head_embed_dim = embed_dim // num_attention_heads

            past_kv = outputs["past_key_values"]
            self.assertEqual(len(past_kv), num_hidden_layers)

            # Encoder-Decoder checks
            if config.is_encoder_decoder:
                encoder_num_attention_heads = config.encoder_attention_heads
                encoder_per_head_embed_dim = embed_dim // encoder_num_attention_heads
                batch_size, seq_length = inputs["decoder_input_ids"].shape
                for i in range(num_hidden_layers):
                    self.assertEqual(len(past_kv[i]), 4)  # K V for the decoder + K V for the encoder = 4
                    self.assertEqual(
                        past_kv[i][0].shape, (batch_size, num_attention_heads, seq_length, per_head_embed_dim)
                    )
                    self.assertEqual(
                        past_kv[i][1].shape, (batch_size, num_attention_heads, seq_length, per_head_embed_dim)
                    )
                    # The sequence length for the encoder K V depends on the model. Since it is not manipulated in
                    # autoregressive generation, I'm keeping the test general and not checking the 3rd dim
                    self.assertEqual(
                        (past_kv[i][2].shape[0], past_kv[i][2].shape[1], past_kv[i][2].shape[3]),
                        (batch_size, encoder_num_attention_heads, encoder_per_head_embed_dim),
                    )
                    self.assertEqual(
                        (past_kv[i][3].shape[0], past_kv[i][3].shape[1], past_kv[i][3].shape[3]),
                        (batch_size, encoder_num_attention_heads, encoder_per_head_embed_dim),
                    )

            # Decoder-only checks
            else:
                # TODO: this line is only needed because of imagegpt, where "pixel_values" = "input_ids". Fix the
                # tests in imagegpt such that `prepare_config_and_inputs_for_common` returns the later (and the other
                # tests use it)
                key = "input_ids" if "input_ids" in inputs else "pixel_values"
                batch_size, seq_length = inputs[key].shape
                for i in range(num_hidden_layers):
                    self.assertEqual(len(past_kv[0]), 2)  # K V for the decoder = 2
                    self.assertEqual(
                        past_kv[i][0].shape, (batch_size, num_attention_heads, seq_length, per_head_embed_dim)
                    )
                    self.assertEqual(
                        past_kv[i][1].shape, (batch_size, num_attention_heads, seq_length, per_head_embed_dim)
                    )

1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
    def test_generate_from_inputs_embeds_decoder_only(self):
        # When supported, tests that the decoder model can generate from `inputs_embeds` instead of `input_ids`
        # if fails, you should probably update the `prepare_inputs_for_generation` function
        for model_class in self.all_generative_model_classes:
            config, input_ids, _, _ = self._get_input_ids_and_config()

            # Ignore:
            # a) eos (to always output 20 tokens) and pad (so we don't try to infer the attn mask from the input_ids,
            #   which would cause a mismatch),
            config.pad_token_id = config.eos_token_id = -1
            # b) embedding scaling, the scaling factor applied after embeding from input_ids (requires knowledge of the
            #   variable that holds the scaling factor, which is model-dependent)
            if hasattr(config, "scale_embedding"):
                config.scale_embedding = False

            # This test is for decoder-only models (encoder-decoder models have native input embeddings support in the
            # decoder)
            if config.is_encoder_decoder:
                continue

            # Skip models without explicit support
            model = model_class(config).to(torch_device).eval()
            if "inputs_embeds" not in inspect.signature(model.prepare_inputs_for_generation).parameters.keys():
                continue

            # Traditional way of generating text
            outputs_from_ids = model.generate(input_ids)
            self.assertEqual(outputs_from_ids.shape, (2, 20))

            # Same thing, but from input embeddings (`input_ids` is passed so the prompt is present in the output)
            inputs_embeds = model.get_input_embeddings()(input_ids)
            outputs_from_embeds = model.generate(input_ids, inputs_embeds=inputs_embeds)
            self.assertListEqual(outputs_from_ids.tolist(), outputs_from_embeds.tolist())

            # But if we pass different inputs_embeds, we should get different outputs
            torch.manual_seed(0)
            random_embeds = torch.rand_like(inputs_embeds)
            outputs_from_rand_embeds = model.generate(input_ids, inputs_embeds=random_embeds)
            with self.assertRaises(AssertionError):
                self.assertListEqual(outputs_from_rand_embeds.tolist(), outputs_from_embeds.tolist())

            # input_ids is not a required input -- if we don't pass it, the newly generated tokens will be the same
            outputs_from_embeds_wo_ids = model.generate(
                inputs_embeds=inputs_embeds, max_new_tokens=20 - inputs_embeds.shape[1]
            )
            self.assertListEqual(
                outputs_from_embeds[:, inputs_embeds.shape[1] :].tolist(),
                outputs_from_embeds_wo_ids[:, 1:].tolist(),
            )

1831
1832
1833
1834
    def test_generate_continue_from_past_key_values(self):
        # Tests that we can continue generating from past key values, returned from a previous `generate` call
        for model_class in self.all_generative_model_classes:
            if any(model_name in model_class.__name__.lower() for model_name in ["imagegpt"]):
1835
                self.skipTest("Won't fix: old model with unique inputs/caches/other")
1836
            if any(model_name in model_class.__name__.lower() for model_name in ["umt5"]):
1837
                self.skipTest("TODO: needs modeling or test input preparation fixes for compatibility")
1838
1839
1840
1841

            config, inputs = self.model_tester.prepare_config_and_inputs_for_common()

            if not hasattr(config, "use_cache"):
1842
                self.skipTest("This model doesn't support caching")
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860

            # Let's make it always:
            # 1. use cache (for obvious reasons)
            # 2. generate to max length (which can be achieved by setting the eos token to an invalid value), which
            #    would make the test flaky (e.g. EOS is generated on iteration 1 on both generations, but the
            #    continuation would force it to generate beyond an EOS token)
            # 3. ignore `token_type_ids` for simplicity
            # 4. ignore `forced_eos_token_id`, which requires further manipulation of the continuation inputs and is
            #    active by default on some models
            config.use_cache = True
            if "token_type_ids" in inputs:
                del inputs["token_type_ids"]

            model = model_class(config).to(torch_device)
            model.eval()
            model.generation_config.pad_token_id = model.generation_config.eos_token_id = -1
            model.generation_config.forced_eos_token_id = None

1861
            # If "past_key_values" is not returned, skip the test (e.g. RWKV uses a different cache name and format)
1862
1863
            outputs = model(**inputs)
            if "past_key_values" not in outputs:
1864
                self.skipTest("This model doesn't return `past_key_values`")
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906

            # Traditional way of generating text, with `return_dict_in_generate` to return the past key values
            outputs = model.generate(**inputs, do_sample=False, max_new_tokens=4, return_dict_in_generate=True)

            # Let's generate again, but passing the past key values in between (3 + 1 = 4 tokens). Note that the
            # inputs may need to be tweaked across `generate` calls (like the attention mask).
            outputs_cached = model.generate(**inputs, do_sample=False, max_new_tokens=3, return_dict_in_generate=True)

            # Continue from the tokens generated above, preparing the inputs accordingly
            inputs["past_key_values"] = outputs_cached.past_key_values
            new_attention_len = outputs_cached.sequences.shape[-1]
            if config.is_encoder_decoder:
                inputs["decoder_input_ids"] = outputs_cached.sequences
                if "decoder_attention_mask" in inputs:
                    inputs["decoder_attention_mask"] = torch.nn.functional.pad(
                        inputs["decoder_attention_mask"],
                        (0, new_attention_len - inputs["decoder_attention_mask"].shape[1]),
                        mode="constant",
                        value=1,
                    )
            else:
                inputs["input_ids"] = outputs_cached.sequences
                if "attention_mask" in inputs:
                    inputs["attention_mask"] = torch.nn.functional.pad(
                        inputs["attention_mask"],
                        (0, new_attention_len - inputs["attention_mask"].shape[1]),
                        mode="constant",
                        value=1,
                    )
            outputs_cached = model.generate(**inputs, do_sample=False, max_new_tokens=1, return_dict_in_generate=True)

            # The two sets of generated text and past kv should be equal to each other
            self.assertListEqual(outputs.sequences.tolist(), outputs_cached.sequences.tolist())
            for layer_idx in range(len(outputs_cached.past_key_values)):
                for kv_idx in range(len(outputs_cached.past_key_values[layer_idx])):
                    self.assertTrue(
                        torch.allclose(
                            outputs.past_key_values[layer_idx][kv_idx],
                            outputs_cached.past_key_values[layer_idx][kv_idx],
                        )
                    )

1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
    def _check_outputs(self, output, input_ids, config, use_cache=False, num_return_sequences=1):
        batch_size, seq_length = input_ids.shape
        num_sequences_in_output = batch_size * num_return_sequences
        gen_len = (
            output.sequences.shape[-1] - 1 if config.is_encoder_decoder else output.sequences.shape[-1] - seq_length
        )

        # scores
        self._check_scores(num_sequences_in_output, output.scores, length=gen_len, config=config)

        # Attentions
        if config.is_encoder_decoder:
            # encoder
1920
            self._check_encoder_attention_for_generate(output.encoder_attentions, batch_size, config, seq_length)
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
            # decoder
            self._check_attentions_for_generate(
                num_sequences_in_output,
                output.decoder_attentions,
                min_length=1,
                max_length=output.sequences.shape[-1],
                config=config,
                use_cache=use_cache,
            )
        else:
            # if use_cache first input is equal to no use_cache, so skip here
            attentions = output.attentions if not use_cache else output.attentions[1:]
            min_length = seq_length if not use_cache else seq_length + 1
            self._check_attentions_for_generate(
                num_sequences_in_output,
                attentions=attentions,
                min_length=min_length,
                max_length=output.sequences.shape[-1],
                config=config,
                use_cache=use_cache,
            )

        # Hidden States
        if config.is_encoder_decoder:
            # encoder
1946
1947
            self._check_encoder_hidden_states_for_generate(
                output.encoder_hidden_states, batch_size, config, seq_length
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
            )

            # decoder
            self._check_hidden_states_for_generate(
                num_sequences_in_output,
                output.decoder_hidden_states,
                min_length=1,
                max_length=output.sequences.shape[-1],
                config=config,
                use_cache=use_cache,
            )
        else:
            # if use_cache first input is equal to no use_cache, so skip here
            hidden_states = output.hidden_states if not use_cache else output.hidden_states[1:]
            min_length = seq_length if not use_cache else seq_length + 1
            self._check_hidden_states_for_generate(
                num_sequences_in_output,
                hidden_states,
                min_length=min_length,
                max_length=output.sequences.shape[-1],
                config=config,
                use_cache=use_cache,
            )

1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
        # Past Key Value States -- two notes here:
        # 1. Its inner sequence length is with respect to the inputs of the latest forward pass, hence the "-1"
        # 2. Some old models still return `output.past_key_values` even without `use_cache=True`
        # 3. TODO (joao): A few models have different formats, skipping those until the cache refactor is complete
        models_without_standard_cache = ("bloom", "ctrl", "fsmt", "gptbigcode", "mega", "reformer")
        has_standard_cache = not any(
            model_name in config.__class__.__name__.lower() for model_name in models_without_standard_cache
        )
        if use_cache and has_standard_cache:
            past_key_values = output.past_key_values
            past_sequence_length = output.sequences.shape[-1] - 1
            self._check_past_key_values_for_generate(
                num_sequences_in_output,
                past_key_values,
                seq_length=past_sequence_length,
                config=config,
            )

1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
    def _check_scores(self, batch_size, scores, length, config):
        expected_shape = (batch_size, config.vocab_size)
        self.assertIsInstance(scores, tuple)
        self.assertEqual(len(scores), length)
        self.assertListEqual([iter_scores.shape for iter_scores in scores], [expected_shape] * len(scores))

    def _check_attentions_for_generate(
        self, batch_size, attentions, min_length, max_length, config, use_cache=False, num_beam_groups=1
    ):
        self.assertIsInstance(attentions, tuple)
        self.assertListEqual(
            [isinstance(iter_attentions, tuple) for iter_attentions in attentions], [True] * len(attentions)
        )
        self.assertEqual(len(attentions), (max_length - min_length) * num_beam_groups)

        for idx, iter_attentions in enumerate(attentions):
            tgt_len = min_length + idx if not use_cache else 1
            src_len = min_length + idx

            expected_shape = (
                batch_size * num_beam_groups,
                config.num_attention_heads,
                tgt_len,
                src_len,
            )
            # check attn size
            self.assertListEqual(
                [layer_attention.shape for layer_attention in iter_attentions], [expected_shape] * len(iter_attentions)
            )

2020
2021
2022
2023
2024
2025
2026
2027
    def _check_encoder_attention_for_generate(self, attentions, batch_size, config, seq_length):
        encoder_expected_shape = (batch_size, config.num_attention_heads, seq_length, seq_length)
        self.assertIsInstance(attentions, tuple)
        self.assertListEqual(
            [layer_attentions.shape for layer_attentions in attentions],
            [encoder_expected_shape] * len(attentions),
        )

2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
    def _check_hidden_states_for_generate(
        self, batch_size, hidden_states, min_length, max_length, config, use_cache=False, num_beam_groups=1
    ):
        self.assertIsInstance(hidden_states, tuple)
        self.assertListEqual(
            [isinstance(iter_hidden_states, tuple) for iter_hidden_states in hidden_states],
            [True] * len(hidden_states),
        )
        self.assertEqual(len(hidden_states), (max_length - min_length) * num_beam_groups)

        for idx, iter_hidden_states in enumerate(hidden_states):
            seq_len = min_length + idx if not use_cache else 1
            expected_shape = (batch_size * num_beam_groups, seq_len, config.hidden_size)
            # check hidden size
            self.assertListEqual(
                [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states],
                [expected_shape] * len(iter_hidden_states),
            )
2046

2047
2048
2049
2050
2051
2052
2053
2054
    def _check_encoder_hidden_states_for_generate(self, hidden_states, batch_size, config, seq_length):
        encoder_expected_shape = (batch_size, seq_length, config.hidden_size)
        self.assertIsInstance(hidden_states, tuple)
        self.assertListEqual(
            [layer_hidden_states.shape for layer_hidden_states in hidden_states],
            [encoder_expected_shape] * len(hidden_states),
        )

2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
    def _check_past_key_values_for_generate(self, batch_size, past_key_values, seq_length, config, num_beam_groups=1):
        self.assertIsInstance(past_key_values, tuple)
        self.assertListEqual(
            [isinstance(iter_past_key_values, tuple) for iter_past_key_values in past_key_values],
            [True] * len(past_key_values),
        )

        # (batch, head, seq_length, head_features)
        expected_shape = (
            batch_size * num_beam_groups,
            config.num_key_value_heads if hasattr(config, "num_key_value_heads") else config.num_attention_heads,
            seq_length,
            config.hidden_size // config.num_attention_heads,
        )
        # check shape key, value
        self.assertListEqual(
            [layer_past_key_values[0].shape for layer_past_key_values in past_key_values],
            [expected_shape] * len(past_key_values),
        )
        self.assertListEqual(
            [layer_past_key_values[1].shape for layer_past_key_values in past_key_values],
            [expected_shape] * len(past_key_values),
        )

2079
    def _check_sequence_inside_sequence(self, tensor_1, tensor_2):
2080
        # check if tensor_1 inside tensor_2 or tensor_2 inside tensor_1.
2081
2082
        # set to same device. we don't care what device.

2083
2084
2085
2086
2087
2088
        if not isinstance(tensor_1, list):
            tensor_1 = tensor_1.cpu().tolist()
        if not isinstance(tensor_2, list):
            tensor_2 = tensor_2.cpu().tolist()

        in_order = len(tensor_1) <= len(tensor_2)
2089
2090
2091
2092
        longer = tensor_2 if in_order else tensor_1
        shorter = tensor_1 if in_order else tensor_2

        flag = False
2093
2094
        chunk_size = len(shorter)
        for chunk_idx in range(len(longer) - chunk_size + 1):
2095
            subseq = longer[chunk_idx : chunk_idx + chunk_size]
2096
            if subseq == shorter:
2097
2098
2099
2100
2101
                flag = True
                break

        self.assertTrue(flag)

2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204

@require_torch
class UtilsFunctionsTest(unittest.TestCase):
    # tests whether the top_k_top_p function behaves as expected
    def test_top_k_top_p_filtering(self):
        logits = torch.tensor(
            [
                [
                    8.2220991,  # 3rd highest value; idx. 0
                    -0.5620044,
                    5.23229752,
                    4.0386393,
                    -6.8798378,
                    -0.54785802,
                    -3.2012153,
                    2.92777176,
                    1.88171953,
                    7.35341276,
                    8.43207833,  # 2nd highest value; idx. 10
                    -9.85711836,
                    -5.96209236,
                    -1.13039161,
                    -7.1115294,
                    -0.8369633,
                    -5.3186408,
                    7.06427407,
                    0.81369344,
                    -0.82023817,
                    -5.9179796,
                    0.58813443,
                    -6.99778438,
                    4.71551189,
                    -0.18771637,
                    7.44020759,  # 4th highest value; idx. 25
                    9.38450987,  # 1st highest value; idx. 26
                    2.12662941,
                    -9.32562038,
                    2.35652522,
                ],  # cummulative prob of 4 highest values <= 0.6
                [
                    0.58425518,
                    4.53139238,
                    -5.57510464,
                    -6.28030699,
                    -7.19529503,
                    -4.02122551,
                    1.39337037,
                    -6.06707057,
                    1.59480517,
                    -9.643119,
                    0.03907799,
                    0.67231762,
                    -8.88206726,
                    6.27115922,  # 4th highest value; idx. 13
                    2.28520723,
                    4.82767506,
                    4.30421368,
                    8.8275313,  # 2nd highest value; idx. 17
                    5.44029958,
                    -4.4735794,
                    7.38579536,  # 3rd highest value; idx. 20
                    -2.91051663,
                    2.61946077,
                    -2.5674762,
                    -9.48959302,
                    -4.02922645,
                    -1.35416918,
                    9.67702323,  # 1st highest value; idx. 27
                    -5.89478553,
                    1.85370467,
                ],  # cummulative prob of 4 highest values <= 0.6
            ],
            dtype=torch.float,
            device=torch_device,
        )

        non_inf_expected_idx = torch.tensor(
            [[0, 0], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 20], [1, 27]],
            dtype=torch.long,
            device=torch_device,
        )  # expected non filtered idx as noted above

        non_inf_expected_output = torch.tensor(
            [
                8.2221,
                8.4321,
                7.4402,
                9.3845,
                6.2712,
                8.8275,
                7.3858,
                9.6770,
            ],  # expected non filtered values as noted above
            dtype=torch.float,
            device=torch_device,
        )

        output = top_k_top_p_filtering(logits, top_k=10, top_p=0.6, min_tokens_to_keep=4)
        non_inf_output = output[output != -float("inf")].to(device=torch_device)
        non_inf_idx = (output != -float("inf")).nonzero().to(device=torch_device)

        self.assertTrue(torch.allclose(non_inf_expected_output, non_inf_output, atol=1e-12))
        self.assertTrue(torch.all(torch.eq(non_inf_expected_idx, non_inf_idx)))
2205

2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
    # tests whether the function uses filter_value instead of default -inf
    def test_top_k_top_p_filtering_with_filter_value(self):
        logits = torch.tensor(
            [
                [
                    1,
                    1,
                    1,
                    0.99,  # get filtered by top-p filtering
                    0.98,  # get filtered by top-k filtering
                ]
            ],
            dtype=torch.float,
            device=torch_device,
        )

        expected_output = torch.tensor(
            [[1, 1, 1, 0, 0]],
            dtype=torch.float,
            device=torch_device,
        )

        output = top_k_top_p_filtering(logits, top_k=4, top_p=0.5, filter_value=0.0)

        self.assertTrue(torch.allclose(expected_output, output, atol=1e-12))

2232
2233

@require_torch
2234
2235
2236
2237
class GenerationIntegrationTests(unittest.TestCase, GenerationIntegrationTestsMixin):
    # setting framework_dependent_parameters needs to be gated, just like its contents' imports
    if is_torch_available():
        framework_dependent_parameters = {
2238
            "AutoModelForCausalLM": AutoModelForCausalLM,
2239
            "AutoModelForSpeechSeq2Seq": AutoModelForSpeechSeq2Seq,
2240
            "AutoModelForSeq2SeqLM": AutoModelForSeq2SeqLM,
2241
            "AutoModelForVision2Seq": AutoModelForVision2Seq,
2242
2243
            "LogitsProcessorList": LogitsProcessorList,
            "MinLengthLogitsProcessor": MinLengthLogitsProcessor,
2244
            "create_tensor_fn": torch.tensor,
2245
            "floats_tensor": floats_tensor,
2246
2247
2248
            "return_tensors": "pt",
        }

2249
2250
    @slow
    def test_diverse_beam_search(self):
2251
        # PT-only test: TF doesn't have a diverse beam search implementation
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood.
        The celebrity couple announced the arrival of their son, Silas Randall Timberlake, in statements to People.
        "Silas was the middle name of Timberlake's maternal grandfather Bill Bomar, who died in 2012, while Randall is the musician's own middle name, as well as his father's first," People reports.
        The couple announced the pregnancy in January, with an Instagram post. It is the first baby for both."""

        bart_tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn")
        bart_model = BartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn").to(torch_device)
        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        outputs = bart_model.generate(
2262
2263
2264
2265
2266
2267
            input_ids,
            num_beams=4,
            num_return_sequences=2,
            num_beam_groups=4,
            diversity_penalty=2.0,
            remove_invalid_values=True,
2268
2269
2270
2271
2272
2273
2274
        )

        generated_text = bart_tokenizer.batch_decode(outputs, skip_special_tokens=True)

        self.assertListEqual(
            generated_text,
            [
Sylvain Gugger's avatar
Sylvain Gugger committed
2275
2276
2277
2278
2279
2280
                "The couple announced the birth of their son, Silas Randall Timberlake, in a statement. Silas was the"
                " middle name of Timberlake's maternal grandfather Bill Bomar. Randall is the musician's own middle"
                " name, as well as his father's first. It is the first baby for both of them.",
                "Justin Timberlake and Jessica Biel have a son. The baby is named Silas Randall Timberlake. It is the"
                " first child for both. The couple announced the pregnancy in January. The name Silas is the middle"
                " name of Timberlake's maternal grandfather. It's also his own middle name.",
2281
2282
            ],
        )
2283
2284

    def test_max_length_backward_compat_greedy(self):
2285
        # PT-only test: TF doesn't have StoppingCriteria
2286
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
2287
2288
2289
2290
        bart_tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        bart_model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to(
            torch_device
        )
2291
2292
2293
2294
2295
        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        max_length = 20
        input_ids = input_ids.expand(2, -1)
        model_kwargs = bart_model._prepare_encoder_decoder_kwargs_for_generation(input_ids, {})
2296
2297
2298
2299
        input_ids, model_kwargs = bart_model._prepare_decoder_input_ids_for_generation(
            batch_size=input_ids.shape[0],
            model_input_name=bart_model.main_input_name,
            model_kwargs=model_kwargs,
2300
2301
2302
2303
            decoder_start_token_id=bart_model.config.decoder_start_token_id,
            bos_token_id=bart_model.config.bos_token_id,
        )

2304
2305
2306
2307
2308
2309
2310
2311
        with self.assertWarns(UserWarning):
            bart_model.greedy_search(
                input_ids,
                max_length=max_length,
                pad_token_id=bart_model.config.pad_token_id,
                eos_token_id=bart_model.config.eos_token_id,
                **model_kwargs,
            )
2312
2313

    def test_max_length_backward_compat_sample(self):
2314
        # PT-only test: TF doesn't have StoppingCriteria
2315
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
2316
2317
2318
2319
        bart_tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        bart_model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to(
            torch_device
        )
2320
2321
2322
2323
2324
        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        max_length = 20
        input_ids = input_ids.expand(2, -1)
        model_kwargs = bart_model._prepare_encoder_decoder_kwargs_for_generation(input_ids, {})
2325
2326
2327
2328
        input_ids, model_kwargs = bart_model._prepare_decoder_input_ids_for_generation(
            batch_size=input_ids.shape[0],
            model_input_name=bart_model.main_input_name,
            model_kwargs=model_kwargs,
2329
2330
2331
            decoder_start_token_id=bart_model.config.decoder_start_token_id,
            bos_token_id=bart_model.config.bos_token_id,
        )
2332
        with torch.no_grad():
2333
2334
2335
2336
2337
2338
2339
2340
            with self.assertWarns(UserWarning):
                bart_model.sample(
                    input_ids,
                    max_length=max_length,
                    pad_token_id=bart_model.config.pad_token_id,
                    eos_token_id=bart_model.config.eos_token_id,
                    **model_kwargs,
                )
2341
2342

    def test_max_length_backward_compat_beam_search(self):
2343
        # PT-only test: TF doesn't have StoppingCriteria
2344
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
2345
2346
2347
2348
        bart_tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        bart_model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to(
            torch_device
        )
2349
2350
2351
2352
2353
2354
2355
2356
        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        batch_size = 1
        max_length = 20
        num_beams = 2

        input_ids = input_ids.expand(2, -1)
        model_kwargs = bart_model._prepare_encoder_decoder_kwargs_for_generation(input_ids, {})
2357
2358
2359
2360
        input_ids, model_kwargs = bart_model._prepare_decoder_input_ids_for_generation(
            batch_size=input_ids.shape[0],
            model_input_name=bart_model.main_input_name,
            model_kwargs=model_kwargs,
2361
2362
2363
2364
2365
2366
2367
2368
2369
            decoder_start_token_id=bart_model.config.decoder_start_token_id,
            bos_token_id=bart_model.config.bos_token_id,
        )

        beam_scorer = BeamSearchScorer(
            batch_size=batch_size,
            num_beams=num_beams,
            device=torch_device,
        )
2370
2371
2372
2373
        with self.assertWarns(UserWarning):
            _ = bart_model.beam_search(
                input_ids, num_beams=num_beams, max_length=max_length, beam_scorer=beam_scorer, **model_kwargs
            )
2374
2375

    def test_max_length_backward_compat_group_beam_search(self):
2376
        # PT-only test: TF doesn't have StoppingCriteria & group beam search
2377
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
2378
2379
2380
2381
        bart_tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        bart_model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to(
            torch_device
        )
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        batch_size = 1
        max_length = 20
        num_beams = 6
        num_beam_groups = 3
        num_return_sequences = num_beams * batch_size

        input_ids = input_ids.expand(6, -1)
        model_kwargs = bart_model._prepare_encoder_decoder_kwargs_for_generation(input_ids, {})
2392
2393
2394
2395
        input_ids, model_kwargs = bart_model._prepare_decoder_input_ids_for_generation(
            batch_size=input_ids.shape[0],
            model_input_name=bart_model.main_input_name,
            model_kwargs=model_kwargs,
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
            decoder_start_token_id=bart_model.config.decoder_start_token_id,
            bos_token_id=bart_model.config.bos_token_id,
        )

        diverse_beam_scorer = BeamSearchScorer(
            batch_size=batch_size,
            num_beams=num_beams,
            device=torch_device,
            num_beam_hyps_to_keep=num_return_sequences,
            num_beam_groups=num_beam_groups,
        )
2407
2408
2409
2410
        with self.assertWarns(UserWarning):
            bart_model.group_beam_search(
                input_ids, diverse_beam_scorer, num_beams=num_beams, max_length=max_length, **model_kwargs
            )
2411
2412

    def test_max_length_warning_if_different(self):
2413
        # PT-only test: TF doesn't have StoppingCriteria
2414
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
2415
2416
2417
2418
        bart_tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        bart_model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to(
            torch_device
        )
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        batch_size = 1

        max_length = 20
        num_beams = 6
        num_beam_groups = 3
        num_return_sequences = num_beams * batch_size
        stopping_criteria_max_length = 18
        stopping_criteria = StoppingCriteriaList([MaxLengthCriteria(max_length=stopping_criteria_max_length)])

        # Greedy
        input_ids = input_ids.expand(6, -1)
        model_kwargs = bart_model._prepare_encoder_decoder_kwargs_for_generation(input_ids, {})
2433
2434
2435
2436
        input_ids, model_kwargs = bart_model._prepare_decoder_input_ids_for_generation(
            batch_size=input_ids.shape[0],
            model_input_name=bart_model.main_input_name,
            model_kwargs=model_kwargs,
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
            decoder_start_token_id=bart_model.config.decoder_start_token_id,
            bos_token_id=bart_model.config.bos_token_id,
        )

        with self.assertWarns(UserWarning):
            bart_model.greedy_search(
                input_ids,
                max_length=max_length,
                pad_token_id=bart_model.config.pad_token_id,
                stopping_criteria=stopping_criteria,
                eos_token_id=bart_model.config.eos_token_id,
                **model_kwargs,
            )

        # Sample
        with self.assertWarns(UserWarning):
2453
2454
2455
2456
2457
2458
2459
2460
2461
            with torch.no_grad():
                bart_model.sample(
                    input_ids,
                    max_length=max_length,
                    stopping_criteria=stopping_criteria,
                    pad_token_id=bart_model.config.pad_token_id,
                    eos_token_id=bart_model.config.eos_token_id,
                    **model_kwargs,
                )
2462
2463
2464
2465
2466
2467
2468
2469

        # Beam
        beam_scorer = BeamSearchScorer(
            batch_size=batch_size,
            num_beams=num_beams,
            device=torch_device,
        )
        with self.assertWarns(UserWarning):
2470
2471
2472
2473
2474
2475
2476
2477
2478
            with torch.no_grad():
                bart_model.beam_search(
                    input_ids,
                    num_beams=num_beams,
                    stopping_criteria=stopping_criteria,
                    max_length=max_length,
                    beam_scorer=beam_scorer,
                    **model_kwargs,
                )
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496

        # Grouped beam search
        diverse_beam_scorer = BeamSearchScorer(
            batch_size=batch_size,
            num_beams=num_beams,
            device=torch_device,
            num_beam_hyps_to_keep=num_return_sequences,
            num_beam_groups=num_beam_groups,
        )
        with self.assertWarns(UserWarning):
            bart_model.group_beam_search(
                input_ids,
                diverse_beam_scorer,
                stopping_criteria=stopping_criteria,
                num_beams=num_beams,
                max_length=max_length,
                **model_kwargs,
            )
2497

2498
    def test_custom_stopping_criteria_overload_error(self):
2499
        # PT-only test: TF doesn't have StoppingCriteria
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
        bart_tokenizer = BartTokenizer.from_pretrained("sshleifer/bart-tiny-random")
        bart_model = BartForConditionalGeneration.from_pretrained("sshleifer/bart-tiny-random").to(torch_device)

        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)
        stopping_criteria = StoppingCriteriaList()
        stopping_criteria.append(MaxLengthCriteria(max_length=42))
        with self.assertRaises(ValueError):
            bart_model.generate(input_ids, stopping_criteria=stopping_criteria)
        with self.assertRaises(ValueError):
            bart_model.generate(input_ids, stopping_criteria=stopping_criteria, max_length=32)

    def test_custom_stopping_criteria(self):
2513
        # PT-only test: TF doesn't have StoppingCriteria
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
        bart_tokenizer = BartTokenizer.from_pretrained("sshleifer/bart-tiny-random")
        bart_model = BartForConditionalGeneration.from_pretrained("sshleifer/bart-tiny-random").to(torch_device)
        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        class DummyCriteria(StoppingCriteria):
            def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
                return input_ids.shape[-1] >= 20

        stopping_criteria = StoppingCriteriaList()
        stopping_criteria.append(DummyCriteria())

        self.assertEqual(
            list(bart_model.generate(input_ids, stopping_criteria=stopping_criteria, max_length=22).shape),
            [1, 20],
        )
        self.assertEqual(
            list(bart_model.generate(input_ids, stopping_criteria=stopping_criteria, max_length=18).shape),
            [1, 18],
        )

2535
    def test_stop_sequence_stopping_criteria(self):
2536
        # PT-only test: TF doesn't have StoppingCriteria
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
        prompt = """Hello I believe in"""
        generator = pipeline("text-generation", model="hf-internal-testing/tiny-random-bart")
        output = generator(prompt)
        self.assertEqual(
            output,
            [
                {
                    "generated_text": (
                        "Hello I believe in in in number number number number number number number number number"
                    )
                }
            ],
        )

        output = generator(prompt, stop_sequence=" number")
        self.assertEqual(output, [{"generated_text": "Hello I believe in in in number"}])

2554
    def test_generate_non_nlp_input_ids_as_kwarg(self):
2555
        # PT-only test: AFAIK there's no non-NLP model architecture in TF that supports `input_ids` as its only input
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
        model = ImageGPTForCausalImageModeling.from_pretrained(
            "hf-internal-testing/tiny-random-imagegpt", max_length=10
        ).to(torch_device)
        input_ids = ids_tensor((3, 5), vocab_size=10)

        output_sequences_kwargs = model.generate(input_ids=input_ids).cpu()
        output_sequences = model.generate(input_ids).cpu()

        self.assertListEqual(output_sequences.tolist(), output_sequences_kwargs.tolist())
        self.assertEqual(output_sequences.shape, (3, 10))

2567
    def test_generate_input_values_as_encoder_kwarg(self):
2568
        # PT-only test: AFAIK there's no generate-capable architecture in TF that supports `input_values` as its input
2569
2570
2571
2572
2573
2574
2575
2576
2577
        input_values = floats_tensor((2, 250))
        model = SpeechEncoderDecoderModel.from_pretrained("hf-internal-testing/tiny-random-speech-encoder-decoder")
        model = model.to(torch_device)
        output_sequences_kwargs = model.generate(input_values=input_values, max_length=5).cpu()
        output_sequences = model.generate(input_values, max_length=5).cpu()

        self.assertListEqual(output_sequences.tolist(), output_sequences_kwargs.tolist())
        self.assertEqual(output_sequences.shape, (2, 5))

2578
    def test_transition_scores_group_beam_search_encoder_decoder(self):
2579
        # PT-only test: TF doesn't have group beam search
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
        articles = [
            "Justin Timberlake and Jessica Biel, welcome to parenthood.",
            "Michael Phelps is arguably the most decorated Olympian of all time.",
        ]
        tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        model = BartForConditionalGeneration.from_pretrained(
            "hf-internal-testing/tiny-random-bart",
            max_length=10,
            num_beams=2,
            num_beam_groups=2,
            num_return_sequences=2,
2591
            diversity_penalty=1.0,
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
            eos_token_id=None,
            return_dict_in_generate=True,
            output_scores=True,
            length_penalty=0.0,
        )
        model = model.to(torch_device)

        input_ids = tokenizer(articles, return_tensors="pt", padding=True).input_ids.to(torch_device)
        outputs = model.generate(input_ids=input_ids)

2602
        transition_scores = model.compute_transition_scores(outputs.sequences, outputs.scores, outputs.beam_indices)
2603
2604
2605
        transition_scores_sum = transition_scores.sum(-1)

        self.assertTrue(torch.allclose(transition_scores_sum, outputs.sequences_scores, atol=1e-3))
2606

2607
2608
    @slow
    def test_beam_search_example_integration(self):
2609
        # PT-only test: TF doesn't have a BeamSearchScorer
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
        # exactly the example provided in the docstrings of beam search, which previously
        # failed after directly copying from it. Refer to PR #15555
        tokenizer = AutoTokenizer.from_pretrained("t5-base")
        model = AutoModelForSeq2SeqLM.from_pretrained("t5-base")

        encoder_input_str = "translate English to German: How old are you?"
        encoder_input_ids = tokenizer(encoder_input_str, return_tensors="pt").input_ids

        # lets run beam search using 3 beams
        num_beams = 3
        # define decoder start token ids
        input_ids = torch.ones((num_beams, 1), device=model.device, dtype=torch.long)
        input_ids = input_ids * model.config.decoder_start_token_id

        # add encoder_outputs to model keyword arguments
        model_kwargs = {
            "encoder_outputs": model.get_encoder()(
                encoder_input_ids.repeat_interleave(num_beams, dim=0), return_dict=True
            )
        }

        # instantiate beam scorer
        beam_scorer = BeamSearchScorer(
            batch_size=1,
            num_beams=num_beams,
            device=model.device,
        )

        # instantiate logits processors
        logits_processor = LogitsProcessorList(
            [
                MinLengthLogitsProcessor(5, eos_token_id=model.config.eos_token_id),
            ]
        )

        outputs = model.beam_search(input_ids, beam_scorer, logits_processor=logits_processor, **model_kwargs)
        outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)

        self.assertListEqual(outputs, ["Wie alt bist du?"])

2650
2651
    @slow
    def test_constrained_beam_search(self):
2652
        # PT-only test: TF doesn't have constrained beam search
2653
2654
        model = GPT2LMHeadModel.from_pretrained("gpt2").to(torch_device)
        tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
2655

2656
2657
        force_tokens = tokenizer("scared", add_prefix_space=True, add_special_tokens=False).input_ids
        force_tokens_2 = tokenizer("big weapons", add_prefix_space=True, add_special_tokens=False).input_ids
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682

        constraints = [
            PhrasalConstraint(force_tokens),
            PhrasalConstraint(force_tokens_2),
        ]

        starting_text = ["The soldiers were not prepared and"]

        input_ids = tokenizer(starting_text, return_tensors="pt").input_ids.to(torch_device)

        outputs = model.generate(
            input_ids,
            constraints=constraints,
            num_beams=10,
            num_return_sequences=1,
            no_repeat_ngram_size=1,
            max_length=30,
            remove_invalid_values=True,
        )

        generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)

        self.assertListEqual(
            generated_text,
            [
2683
2684
                "The soldiers were not prepared and didn't know what to do. They had no idea how they would react if"
                " the enemy attacked them, big weapons scared"
2685
2686
2687
            ],
        )

2688
2689
    @slow
    def test_constrained_beam_search_mixed(self):
2690
        # PT-only test: TF doesn't have constrained beam search
2691
2692
        model = GPT2LMHeadModel.from_pretrained("gpt2").to(torch_device)
        tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722

        force_phrase = tokenizer("scared", add_prefix_space=True, add_special_tokens=False).input_ids
        flexible_phrases = tokenizer(
            ["scream", "screams", "screaming", "screamed"], add_prefix_space=True, add_special_tokens=False
        ).input_ids

        constraints = [
            PhrasalConstraint(force_phrase),
            DisjunctiveConstraint(flexible_phrases),
        ]

        starting_text = ["The soldiers", "The child"]

        input_ids = tokenizer(starting_text, return_tensors="pt").input_ids.to(torch_device)

        outputs = model.generate(
            input_ids,
            constraints=constraints,
            num_beams=10,
            num_return_sequences=1,
            no_repeat_ngram_size=1,
            # max_length=20,
            remove_invalid_values=True,
        )

        generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)

        self.assertListEqual(
            generated_text,
            [
2723
2724
2725
                "The soldiers, who had been stationed at the base for more than a year before being evacuated"
                " screaming scared",
                "The child was taken to a local hospital where he died.\n 'I don't think screaming scared",
2726
2727
2728
2729
2730
            ],
        )

    @slow
    def test_constrained_beam_search_mixed_mixin(self):
2731
        # PT-only test: TF doesn't have constrained beam search
2732
2733
        model = GPT2LMHeadModel.from_pretrained("gpt2").to(torch_device)
        tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760

        force_word = "scared"
        force_flexible = ["scream", "screams", "screaming", "screamed"]

        force_words_ids = [
            tokenizer([force_word], add_prefix_space=True, add_special_tokens=False).input_ids,
            tokenizer(force_flexible, add_prefix_space=True, add_special_tokens=False).input_ids,
        ]

        starting_text = ["The soldiers", "The child"]

        input_ids = tokenizer(starting_text, return_tensors="pt").input_ids.to(torch_device)

        outputs = model.generate(
            input_ids,
            force_words_ids=force_words_ids,
            num_beams=10,
            num_return_sequences=1,
            no_repeat_ngram_size=1,
            remove_invalid_values=True,
        )

        generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)

        self.assertListEqual(
            generated_text,
            [
2761
2762
2763
                "The soldiers, who had been stationed at the base for more than a year before being evacuated"
                " screaming scared",
                "The child was taken to a local hospital where he died.\n 'I don't think screaming scared",
2764
2765
2766
            ],
        )

2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
    @slow
    def test_cfg_mixin(self):
        model = GPT2LMHeadModel.from_pretrained("gpt2").to(torch_device)
        tokenizer = GPT2Tokenizer.from_pretrained("gpt2")

        input = tokenizer(["The dragon flew over Paris,"], return_tensors="pt", return_attention_mask=True)
        input["input_ids"] = input["input_ids"].to(torch_device)
        input["attention_mask"] = input["attention_mask"].to(torch_device)

        outputs = model.generate(**input, max_new_tokens=32, guidance_scale=1.5)
        generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)

        self.assertListEqual(
            generated_text,
            [
                "The dragon flew over Paris, landing in the Rue de la Bastille. The crowd was so excited "
                'that they had to leave the city.\n\n"We\'re going to Paris!"\n'
            ],
        )

        neg = tokenizer(["France,"], return_tensors="pt", return_attention_mask=True)
        neg["input_ids"] = neg["input_ids"].to(torch_device)
        neg["attention_mask"] = neg["attention_mask"].to(torch_device)
        outputs = model.generate(
            **input,
            max_new_tokens=32,
            guidance_scale=1.5,
            negative_prompt_ids=neg["input_ids"],
            negative_prompt_attention_mask=neg["attention_mask"],
        )
        generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)

        self.assertListEqual(
            generated_text,
            [
                'The dragon flew over Paris, landing on the pavement.\n\n"Paris!"\n\n"Paris!"\n\n"'
                'Paris!"\n\n"Paris!"\n\n"Paris!"\n\n'
            ],
        )

2807
2808
    @slow
    def test_constrained_beam_search_example_translation_mixin(self):
2809
        # PT-only test: TF doesn't have constrained beam search
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
        tokenizer = AutoTokenizer.from_pretrained("t5-base")
        model = AutoModelForSeq2SeqLM.from_pretrained("t5-base")

        encoder_input_str = "translate English to German: How old are you?"
        force_words = ["sind"]

        input_ids = tokenizer(encoder_input_str, return_tensors="pt").input_ids
        force_words_ids = tokenizer(force_words, add_special_tokens=False).input_ids

        outputs = model.generate(
            input_ids,
            force_words_ids=force_words_ids,
            num_beams=10,
            num_return_sequences=1,
            no_repeat_ngram_size=1,
            remove_invalid_values=True,
        )

        outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)

2830
        self.assertListEqual(outputs, ["Wie alt sind Sie?"])
2831

2832
2833
    @slow
    def test_constrained_beam_search_example_integration(self):
2834
        # PT-only test: TF doesn't have constrained beam search
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
        tokenizer = AutoTokenizer.from_pretrained("t5-base")
        model = AutoModelForSeq2SeqLM.from_pretrained("t5-base")

        encoder_input_str = "translate English to German: How old are you?"
        encoder_input_ids = tokenizer(encoder_input_str, return_tensors="pt").input_ids

        # lets run beam search using 5 beams
        num_beams = 5
        # define decoder start token ids
        input_ids = torch.ones((num_beams, 1), device=model.device, dtype=torch.long)
        input_ids = input_ids * model.config.decoder_start_token_id

        # add encoder_outputs to model keyword arguments
        model_kwargs = {
            "encoder_outputs": model.get_encoder()(
                encoder_input_ids.repeat_interleave(num_beams, dim=0), return_dict=True
            )
        }

        constraint_str = "sind"
        constraint_token_ids = tokenizer.encode(constraint_str)[:-1]  # remove eos token
        constraints = [PhrasalConstraint(token_ids=constraint_token_ids)]

        # instantiate beam scorer
        beam_scorer = ConstrainedBeamSearchScorer(
            batch_size=1, num_beams=num_beams, device=model.device, constraints=constraints
        )

        # instantiate logits processors
        logits_processor = LogitsProcessorList(
            [
                MinLengthLogitsProcessor(5, eos_token_id=model.config.eos_token_id),
            ]
        )

        outputs = model.constrained_beam_search(
            input_ids, beam_scorer, constraints=constraints, logits_processor=logits_processor, **model_kwargs
        )
        outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)

2875
        self.assertListEqual(outputs, ["Wie alt sind Sie?"])
2876
2877

    def test_constrained_beam_search_mixin_type_checks(self):
2878
        # PT-only test: TF doesn't have constrained beam search
2879
2880
        tokenizer = AutoTokenizer.from_pretrained("patrickvonplaten/t5-tiny-random")
        model = AutoModelForSeq2SeqLM.from_pretrained("patrickvonplaten/t5-tiny-random")
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916

        encoder_input_str = "translate English to German: How old are you?"
        input_ids = tokenizer(encoder_input_str, return_tensors="pt").input_ids

        with self.assertRaises(ValueError):
            force_words = ["sind"]
            force_words_ids = tokenizer(force_words, return_tensors="pt").input_ids
            model.generate(
                input_ids,
                force_words_ids=force_words_ids,
                num_beams=10,
                num_return_sequences=1,
                no_repeat_ngram_size=1,
                remove_invalid_values=True,
            )

        with self.assertRaises(ValueError):
            force_words = ["sind"]
            force_words_ids = [tokenizer(force_words, return_tensors="pt").input_ids]
            model.generate(
                input_ids,
                force_words_ids=force_words_ids,
                num_beams=10,
                num_return_sequences=1,
                no_repeat_ngram_size=1,
                remove_invalid_values=True,
            )

        with self.assertRaises(ValueError):
            model.generate(input_ids, force_words_ids=[])

        with self.assertRaises(ValueError):
            model.generate(input_ids, force_words_ids=[[-1]])

        with self.assertRaises(ValueError):
            model.generate(input_ids, force_words_ids=[[[-1]]])
2917

2918
    def test_contrastive_search_batched(self):
2919
        # PT-only test: TF doesn't have constrained beam search
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
        # Tests that contrastive search works with batched inputs (i.e. has the same output as for non-batched inputs)
        articles = ["Foo", "Bar Baz"]
        tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to(torch_device)

        model.config.eos_token_id = None
        input_ids_batched = tokenizer(articles, padding=True, return_tensors="pt").input_ids.to(torch_device)
        input_ids = tokenizer(articles[1], return_tensors="pt").input_ids.to(torch_device)

        output_sequences_batched = model.generate(
            input_ids=input_ids_batched, penalty_alpha=0.6, top_k=4, return_dict_in_generate=True, output_scores=True
        )
        output_sequences = model.generate(
            input_ids=input_ids, penalty_alpha=0.6, top_k=4, return_dict_in_generate=True, output_scores=True
        )

        batched_out = tokenizer.decode(output_sequences_batched.sequences[1], skip_special_tokens=True)
        out = tokenizer.decode(output_sequences.sequences[0], skip_special_tokens=True)
        self.assertEqual(batched_out, out)

        # output_sequences_batched.scores[0][1] -> 1st set of logits, 2nd sequence
        max_score_diff = (output_sequences_batched.scores[0][1] - output_sequences.scores[0][0]).abs().max()
        self.assertTrue(max_score_diff < 1e-5)

2944
    def test_eos_token_id_int_and_list_top_k_top_sampling(self):
2945
        # Has TF equivalent: this test relies on random sampling
2946
2947
2948
2949
2950
2951
2952
        generation_kwargs = {
            "do_sample": True,
            "num_beams": 1,
            "top_p": 0.7,
            "top_k": 10,
            "temperature": 0.7,
        }
2953
        expectation = 20
2954

2955
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
2956
        text = """Hello, my dog is cute and"""
2957
        tokens = tokenizer(text, return_tensors="pt").to(torch_device)
2958
        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
2959

2960
2961
2962
        # Only some seeds will work both on CPU/GPU for a fixed `expectation` value.
        # The selected seed is not guaranteed to work on all torch versions.
        torch.manual_seed(1)
2963
2964
2965
2966
        eos_token_id = 846
        generated_tokens = model.generate(**tokens, eos_token_id=eos_token_id, **generation_kwargs)
        self.assertTrue(expectation == len(generated_tokens[0]))

2967
        torch.manual_seed(1)
2968
        eos_token_id = [846, 198]
2969
2970
        generated_tokens = model.generate(**tokens, eos_token_id=eos_token_id, **generation_kwargs)
        self.assertTrue(expectation == len(generated_tokens[0]))
2971

2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
    def test_model_kwarg_encoder_signature_filtering(self):
        # Has TF equivalent: ample use of framework-specific code
        bart_tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        article = """Hugging Face is a technology company based in New York and Paris."""
        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)
        bart_model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to(
            torch_device
        )
        output = bart_model.generate(input_ids).cpu().numpy()

        # Let's create a fake model that has a different signature. In particular, this fake model accepts "foo" as an
        # argument. Because "foo" is not in the encoder signature and doesn't start with "decoder_", it will be part of
        # the encoder kwargs prior to signature filtering, which would lead to an exception. But filtering kicks in and
        # saves the day.
        class FakeBart(BartForConditionalGeneration):
            def forward(self, input_ids, foo=None, **kwargs):
                return super().forward(input_ids, **kwargs)

        bart_model = FakeBart.from_pretrained("hf-internal-testing/tiny-random-bart").to(torch_device)
        fake_output = bart_model.generate(input_ids, foo="bar").cpu().numpy()
        self.assertTrue(np.array_equal(output, fake_output))

        # Encoder signature filtering only kicks in if it doesn't accept wildcard kwargs. The following test will fail
        # because it doesn't do signature filtering.
        class FakeEncoder(bart_model.model.encoder.__class__):
            def forward(self, input_ids, **kwargs):
                return super().forward(input_ids, **kwargs)

        fake_encoder = FakeEncoder(bart_model.config, bart_model.model.shared).to(torch_device)
        bart_model.model.encoder = fake_encoder

        # Normal generation still works (the output will be different because the encoder weights are different)
        fake_output = bart_model.generate(input_ids).cpu().numpy()
        with self.assertRaises(TypeError):
            # FakeEncoder.forward() accepts **kwargs -> no filtering -> type error due to unexpected input "foo"
            bart_model.generate(input_ids, foo="bar")
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028

    def test_default_max_length_warning(self):
        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        model.config.pad_token_id = tokenizer.eos_token_id

        text = "Hello world"
        tokenized_inputs = tokenizer([text], return_tensors="pt")
        input_ids = tokenized_inputs.input_ids.to(torch_device)

        # Default generation config value of 20 -> emits warning
        with self.assertWarns(UserWarning):
            model.generate(input_ids)

        # Explicitly setting max_length to 20 -> no warning
        with warnings.catch_warnings(record=True) as warning_list:
            model.generate(input_ids, max_length=20)
            self.assertEqual(len(warning_list), 0)

        # Generation config max_length != 20 -> no warning
        with warnings.catch_warnings(record=True) as warning_list:
3029
            # generation_config is modified -> legacy mode is disabled = generation_config takes precedence
3030
3031
3032
            model.generation_config.max_length = 10
            model.generate(input_ids)
            self.assertEqual(len(warning_list), 0)
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079

    def test_model_kwarg_assisted_decoding_decoder_only(self):
        # PT-only test: TF doesn't support assisted decoding yet.
        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        model.config.pad_token_id = tokenizer.eos_token_id

        text = "Hello world"
        tokenized_inputs = tokenizer([text], return_tensors="pt")
        input_ids = tokenized_inputs.input_ids.to(torch_device)

        # Traditional way of generating text
        outputs_normal = model.generate(input_ids)
        self.assertEqual(outputs_normal.shape, (1, 20))

        # Should be different with token_type_ids
        outputs_tti = model.generate(
            input_ids,
            token_type_ids=torch.zeros(input_ids.shape, dtype=torch.long).to(torch_device),
        )
        with self.assertRaises(AssertionError):
            self.assertListEqual(outputs_tti.tolist(), outputs_normal.tolist())

        # Assistant model
        assistant = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        assistant.config.pad_token_id = tokenizer.eos_token_id

        # If assisted generation passes model_kwargs correctly, should be same as previous
        outputs_assisted = model.generate(
            input_ids,
            token_type_ids=torch.zeros(input_ids.shape, dtype=torch.long).to(torch_device),
            assistant_model=assistant,
        )
        self.assertListEqual(outputs_assisted.tolist(), outputs_tti.tolist())

    def test_model_kwarg_assisted_decoding_encoder_decoder(self):
        # PT-only test: TF doesn't support assisted decoding yet.
        # Bart subclass with a kwarg that distorts the output
        class FakeBart(BartForConditionalGeneration):
            def forward(self, input_ids, foo=False, **kwargs):
                outs = super().forward(input_ids, **kwargs)

                if foo:
                    outs["logits"][:, :, :] = 0.0

                return outs

3080
3081
            def prepare_inputs_for_generation(self, *args, foo=False, encoder_outputs=None, **kwargs):
                kwargs["encoder_outputs"] = encoder_outputs
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
                inputs = super().prepare_inputs_for_generation(*args, **kwargs)

                inputs["foo"] = foo
                return inputs

        model = FakeBart.from_pretrained("hf-internal-testing/tiny-random-BartForConditionalGeneration").to(
            torch_device
        )
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-BartForConditionalGeneration")

        text = "Hello world"
        tokenized_inputs = tokenizer([text], return_tensors="pt")
        input_ids = tokenized_inputs.input_ids.to(torch_device)

        # Traditional way of generating text
        outputs_normal = model.generate(input_ids)
        self.assertEqual(outputs_normal.shape, (1, 20))

        # Should be different with foo
        outputs_foo = model.generate(
            input_ids,
            foo=True,
        )
        with self.assertRaises(AssertionError):
            self.assertListEqual(outputs_foo.tolist(), outputs_normal.tolist())

        # Assistant model
        assistant = AutoModelForSeq2SeqLM.from_pretrained(
            "hf-internal-testing/tiny-random-BartForConditionalGeneration"
        ).to(torch_device)

        # If assisted generation passes model_kwargs correctly, should be same as previous
        outputs_assisted = model.generate(
            input_ids,
            foo=True,
            assistant_model=assistant,
        )
        self.assertListEqual(outputs_assisted.tolist(), outputs_foo.tolist())
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130

        # Check that passing encoder_outputs directly also works as expected
        encoder_outputs = assistant.get_encoder()(input_ids)

        outputs_assisted = model.generate(
            foo=True,
            assistant_model=assistant,
            encoder_outputs=encoder_outputs,
            assistant_encoder_outputs=encoder_outputs,
        )
        self.assertListEqual(outputs_assisted.tolist(), outputs_foo.tolist())
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190

    def test_assisted_decoding_encoder_decoder_shared_encoder(self):
        # PT-only test: TF doesn't support assisted decoding yet.
        # Bart subclass with a kwarg called foo that distorts the output
        class FakeBart(BartForConditionalGeneration):
            def forward(self, input_ids, foo=False, **kwargs):
                outs = super().forward(input_ids, **kwargs)

                if foo:
                    outs["logits"][:, :, :] = 0.0

                return outs

            def prepare_inputs_for_generation(self, *args, foo=False, encoder_outputs=None, **kwargs):
                kwargs["encoder_outputs"] = encoder_outputs
                inputs = super().prepare_inputs_for_generation(*args, **kwargs)

                inputs["foo"] = foo
                return inputs

        model = FakeBart.from_pretrained("hf-internal-testing/tiny-random-BartForConditionalGeneration").to(
            torch_device
        )
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-BartForConditionalGeneration")

        text = "Hello world"
        tokenized_inputs = tokenizer([text], return_tensors="pt")
        input_ids = tokenized_inputs.input_ids.to(torch_device)

        # Traditional way of generating text
        outputs_normal = model.generate(input_ids)
        self.assertEqual(outputs_normal.shape, (1, 20))

        # Should be different with foo
        outputs_foo = model.generate(input_ids, foo=True)
        with self.assertRaises(AssertionError):
            self.assertListEqual(outputs_foo.tolist(), outputs_normal.tolist())

        # Assistant model
        assistant = BartForCausalLM.from_pretrained("hf-internal-testing/tiny-random-BartForConditionalGeneration").to(
            torch_device
        )

        # If assisted generation passes model_kwargs correctly, should be same as previous
        outputs_assisted = model.generate(
            input_ids,
            foo=True,
            assistant_model=assistant,
        )
        self.assertListEqual(outputs_assisted.tolist(), outputs_foo.tolist())

        # Check that passing encoder_outputs directly also works as expected
        encoder_outputs = model.get_encoder()(input_ids)

        outputs_assisted = model.generate(
            foo=True,
            assistant_model=assistant,
            encoder_outputs=encoder_outputs,
        )
        self.assertListEqual(outputs_assisted.tolist(), outputs_foo.tolist())