"docs/source/summary.rst" did not exist on "79ab881eb18c5d654b190a6d748e3fd2520266b2"
run_tf_ner.py 10.7 KB
Newer Older
1
# coding=utf-8
Julien Plu's avatar
Julien Plu committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Fine-tuning the library models for named entity recognition."""


import logging
Aymeric Augustin's avatar
Aymeric Augustin committed
19
import os
Julien Plu's avatar
Julien Plu committed
20
from dataclasses import dataclass, field
21
from importlib import import_module
Julien Plu's avatar
Julien Plu committed
22
from typing import Dict, List, Optional, Tuple
Aymeric Augustin's avatar
Aymeric Augustin committed
23

24
import numpy as np
Julien Plu's avatar
Julien Plu committed
25
from seqeval.metrics import classification_report, f1_score, precision_score, recall_score
26

Aymeric Augustin's avatar
Aymeric Augustin committed
27
from transformers import (
28
29
    AutoConfig,
    AutoTokenizer,
Julien Plu's avatar
Julien Plu committed
30
31
    EvalPrediction,
    HfArgumentParser,
32
    TFAutoModelForTokenClassification,
Julien Plu's avatar
Julien Plu committed
33
34
    TFTrainer,
    TFTrainingArguments,
Aymeric Augustin's avatar
Aymeric Augustin committed
35
)
36
from utils_ner import Split, TFTokenClassificationDataset, TokenClassificationTask
37
38


Julien Plu's avatar
Julien Plu committed
39
logger = logging.getLogger(__name__)
40
41


Julien Plu's avatar
Julien Plu committed
42
43
44
45
46
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """
47

Julien Plu's avatar
Julien Plu committed
48
49
    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
50
    )
Julien Plu's avatar
Julien Plu committed
51
52
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
53
    )
54
55
56
    task_type: Optional[str] = field(
        default="NER", metadata={"help": "Task type to fine tune in training (e.g. NER, POS, etc)"}
    )
Julien Plu's avatar
Julien Plu committed
57
58
59
60
61
62
63
64
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    use_fast: bool = field(default=False, metadata={"help": "Set this flag to use fast tokenization."})
    # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
    # or just modify its tokenizer_config.json.
    cache_dir: Optional[str] = field(
        default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
65
    )
66
67


Julien Plu's avatar
Julien Plu committed
68
69
70
71
72
@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """
73

Julien Plu's avatar
Julien Plu committed
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
    data_dir: str = field(
        metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."}
    )
    labels: Optional[str] = field(
        metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."}
    )
    max_seq_length: int = field(
        default=128,
        metadata={
            "help": "The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded."
        },
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
    )
90
91


Julien Plu's avatar
Julien Plu committed
92
93
94
95
96
97
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.
    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments))
    model_args, data_args, training_args = parser.parse_args_into_dataclasses()
98

99
    if (
Julien Plu's avatar
Julien Plu committed
100
101
102
103
        os.path.exists(training_args.output_dir)
        and os.listdir(training_args.output_dir)
        and training_args.do_train
        and not training_args.overwrite_output_dir
104
    ):
105
        raise ValueError(
Julien Plu's avatar
Julien Plu committed
106
            f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome."
107
        )
108

109
110
111
112
113
114
115
116
117
118
119
    module = import_module("tasks")

    try:
        token_classification_task_clazz = getattr(module, model_args.task_type)
        token_classification_task: TokenClassificationTask = token_classification_task_clazz()
    except AttributeError:
        raise ValueError(
            f"Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. "
            f"Available tasks classes are: {TokenClassificationTask.__subclasses__()}"
        )

Julien Plu's avatar
Julien Plu committed
120
121
122
123
124
    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
125
    )
Julien Plu's avatar
Julien Plu committed
126
    logger.info(
127
128
129
        "n_replicas: %s, distributed training: %s, 16-bits training: %s",
        training_args.n_replicas,
        bool(training_args.n_replicas > 1),
Julien Plu's avatar
Julien Plu committed
130
131
132
        training_args.fp16,
    )
    logger.info("Training/evaluation parameters %s", training_args)
133

Julien Plu's avatar
Julien Plu committed
134
    # Prepare Token Classification task
135
    labels = token_classification_task.get_labels(data_args.labels)
Julien Plu's avatar
Julien Plu committed
136
    label_map: Dict[int, str] = {i: label for i, label in enumerate(labels)}
Julien Plu's avatar
Julien Plu committed
137
    num_labels = len(labels)
Julien Plu's avatar
Julien Plu committed
138
139
140
141
142
143
144

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.

145
    config = AutoConfig.from_pretrained(
Julien Plu's avatar
Julien Plu committed
146
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
147
        num_labels=num_labels,
Julien Plu's avatar
Julien Plu committed
148
149
150
151
152
153
154
155
        id2label=label_map,
        label2id={label: i for i, label in enumerate(labels)},
        cache_dir=model_args.cache_dir,
    )
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        use_fast=model_args.use_fast,
156
    )
157

Julien Plu's avatar
Julien Plu committed
158
159
160
161
162
163
    with training_args.strategy.scope():
        model = TFAutoModelForTokenClassification.from_pretrained(
            model_args.model_name_or_path,
            from_pt=bool(".bin" in model_args.model_name_or_path),
            config=config,
            cache_dir=model_args.cache_dir,
164
        )
165

Julien Plu's avatar
Julien Plu committed
166
167
    # Get datasets
    train_dataset = (
168
169
        TFTokenClassificationDataset(
            token_classification_task=token_classification_task,
Julien Plu's avatar
Julien Plu committed
170
171
172
173
174
175
176
            data_dir=data_args.data_dir,
            tokenizer=tokenizer,
            labels=labels,
            model_type=config.model_type,
            max_seq_length=data_args.max_seq_length,
            overwrite_cache=data_args.overwrite_cache,
            mode=Split.train,
177
        )
Julien Plu's avatar
Julien Plu committed
178
179
180
181
        if training_args.do_train
        else None
    )
    eval_dataset = (
182
183
        TFTokenClassificationDataset(
            token_classification_task=token_classification_task,
Julien Plu's avatar
Julien Plu committed
184
185
186
187
188
189
190
            data_dir=data_args.data_dir,
            tokenizer=tokenizer,
            labels=labels,
            model_type=config.model_type,
            max_seq_length=data_args.max_seq_length,
            overwrite_cache=data_args.overwrite_cache,
            mode=Split.dev,
191
        )
Julien Plu's avatar
Julien Plu committed
192
193
194
        if training_args.do_eval
        else None
    )
195

Julien Plu's avatar
Julien Plu committed
196
197
198
199
200
201
202
203
    def align_predictions(predictions: np.ndarray, label_ids: np.ndarray) -> Tuple[List[int], List[int]]:
        preds = np.argmax(predictions, axis=2)
        batch_size, seq_len = preds.shape
        out_label_list = [[] for _ in range(batch_size)]
        preds_list = [[] for _ in range(batch_size)]

        for i in range(batch_size):
            for j in range(seq_len):
204
                if label_ids[i, j] != -100:
Julien Plu's avatar
Julien Plu committed
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
                    out_label_list[i].append(label_map[label_ids[i][j]])
                    preds_list[i].append(label_map[preds[i][j]])

        return preds_list, out_label_list

    def compute_metrics(p: EvalPrediction) -> Dict:
        preds_list, out_label_list = align_predictions(p.predictions, p.label_ids)

        return {
            "precision": precision_score(out_label_list, preds_list),
            "recall": recall_score(out_label_list, preds_list),
            "f1": f1_score(out_label_list, preds_list),
        }

    # Initialize our Trainer
    trainer = TFTrainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset.get_dataset() if train_dataset else None,
        eval_dataset=eval_dataset.get_dataset() if eval_dataset else None,
        compute_metrics=compute_metrics,
    )
227

Julien Plu's avatar
Julien Plu committed
228
229
230
231
232
    # Training
    if training_args.do_train:
        trainer.train()
        trainer.save_model()
        tokenizer.save_pretrained(training_args.output_dir)
233
234

    # Evaluation
Julien Plu's avatar
Julien Plu committed
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
    results = {}
    if training_args.do_eval:
        logger.info("*** Evaluate ***")

        result = trainer.evaluate()
        output_eval_file = os.path.join(training_args.output_dir, "eval_results.txt")

        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")

            for key, value in result.items():
                logger.info("  %s = %s", key, value)
                writer.write("%s = %s\n" % (key, value))

            results.update(result)

    # Predict
    if training_args.do_predict:
253
254
        test_dataset = TFTokenClassificationDataset(
            token_classification_task=token_classification_task,
Julien Plu's avatar
Julien Plu committed
255
256
257
258
259
260
261
            data_dir=data_args.data_dir,
            tokenizer=tokenizer,
            labels=labels,
            model_type=config.model_type,
            max_seq_length=data_args.max_seq_length,
            overwrite_cache=data_args.overwrite_cache,
            mode=Split.test,
262
        )
263

Julien Plu's avatar
Julien Plu committed
264
265
266
267
268
        predictions, label_ids, metrics = trainer.predict(test_dataset.get_dataset())
        preds_list, labels_list = align_predictions(predictions, label_ids)
        report = classification_report(labels_list, preds_list)

        logger.info("\n%s", report)
269

Julien Plu's avatar
Julien Plu committed
270
        output_test_results_file = os.path.join(training_args.output_dir, "test_results.txt")
271

Julien Plu's avatar
Julien Plu committed
272
273
        with open(output_test_results_file, "w") as writer:
            writer.write("%s\n" % report)
274

Julien Plu's avatar
Julien Plu committed
275
276
277
278
279
        # Save predictions
        output_test_predictions_file = os.path.join(training_args.output_dir, "test_predictions.txt")

        with open(output_test_predictions_file, "w") as writer:
            with open(os.path.join(data_args.data_dir, "test.txt"), "r") as f:
280
281
282
283
284
285
                example_id = 0

                for line in f:
                    if line.startswith("-DOCSTART-") or line == "" or line == "\n":
                        writer.write(line)

Julien Plu's avatar
Julien Plu committed
286
                        if not preds_list[example_id]:
287
                            example_id += 1
Julien Plu's avatar
Julien Plu committed
288
289
290
                    elif preds_list[example_id]:
                        output_line = line.split()[0] + " " + preds_list[example_id].pop(0) + "\n"

291
292
                        writer.write(output_line)
                    else:
Julien Plu's avatar
Julien Plu committed
293
294
295
                        logger.warning("Maximum sequence length exceeded: No prediction for '%s'.", line.split()[0])

    return results
296
297
298


if __name__ == "__main__":
Julien Plu's avatar
Julien Plu committed
299
    main()