test_modeling_xlnet.py 27.7 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16
17

import random
18
import unittest
thomwolf's avatar
thomwolf committed
19

20
from transformers import is_torch_available
thomwolf's avatar
thomwolf committed
21

22
from .test_configuration_common import ConfigTester
23
from .test_modeling_common import ModelTesterMixin, ids_tensor
24
from .utils import require_torch, slow, torch_device
Aymeric Augustin's avatar
Aymeric Augustin committed
25
26


27
if is_torch_available():
thomwolf's avatar
thomwolf committed
28
29
    import torch

30
31
32
33
34
35
36
37
    from transformers import (
        XLNetConfig,
        XLNetModel,
        XLNetLMHeadModel,
        XLNetForSequenceClassification,
        XLNetForTokenClassification,
        XLNetForQuestionAnswering,
    )
38
    from transformers.modeling_xlnet import XLNET_PRETRAINED_MODEL_ARCHIVE_LIST
thomwolf's avatar
thomwolf committed
39

40
41

@require_torch
42
class XLNetModelTest(ModelTesterMixin, unittest.TestCase):
thomwolf's avatar
thomwolf committed
43

44
45
46
47
48
49
50
51
52
53
54
    all_model_classes = (
        (
            XLNetModel,
            XLNetLMHeadModel,
            XLNetForTokenClassification,
            XLNetForSequenceClassification,
            XLNetForQuestionAnswering,
        )
        if is_torch_available()
        else ()
    )
55
56
57
    all_generative_model_classes = (
        (XLNetLMHeadModel,) if is_torch_available() else ()
    )  # TODO (PVP): Check other models whether language generation is also applicable
thomwolf's avatar
thomwolf committed
58
    test_pruning = False
thomwolf's avatar
thomwolf committed
59

thomwolf's avatar
thomwolf committed
60
    class XLNetModelTester(object):
61
62
63
        def __init__(
            self,
            parent,
64
            batch_size=14,
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
            seq_length=7,
            mem_len=10,
            clamp_len=-1,
            reuse_len=15,
            is_training=True,
            use_labels=True,
            vocab_size=99,
            cutoffs=[10, 50, 80],
            hidden_size=32,
            num_attention_heads=4,
            d_inner=128,
            num_hidden_layers=5,
            type_sequence_label_size=2,
            untie_r=True,
            bi_data=False,
            same_length=False,
            initializer_range=0.05,
            seed=1,
            type_vocab_size=2,
84
85
86
            bos_token_id=1,
            eos_token_id=2,
            pad_token_id=5,
87
        ):
thomwolf's avatar
thomwolf committed
88
89
90
91
            self.parent = parent
            self.batch_size = batch_size
            self.seq_length = seq_length
            self.mem_len = mem_len
thomwolf's avatar
thomwolf committed
92
            # self.key_len = seq_length + mem_len
thomwolf's avatar
thomwolf committed
93
94
95
96
97
98
            self.clamp_len = clamp_len
            self.reuse_len = reuse_len
            self.is_training = is_training
            self.use_labels = use_labels
            self.vocab_size = vocab_size
            self.cutoffs = cutoffs
thomwolf's avatar
thomwolf committed
99
100
            self.hidden_size = hidden_size
            self.num_attention_heads = num_attention_heads
thomwolf's avatar
thomwolf committed
101
            self.d_inner = d_inner
thomwolf's avatar
thomwolf committed
102
            self.num_hidden_layers = num_hidden_layers
thomwolf's avatar
thomwolf committed
103
104
105
            self.bi_data = bi_data
            self.untie_r = untie_r
            self.same_length = same_length
106
            self.initializer_range = initializer_range
thomwolf's avatar
thomwolf committed
107
108
            self.seed = seed
            self.type_vocab_size = type_vocab_size
thomwolf's avatar
thomwolf committed
109
            self.type_sequence_label_size = type_sequence_label_size
110
111
112
            self.bos_token_id = bos_token_id
            self.pad_token_id = pad_token_id
            self.eos_token_id = eos_token_id
thomwolf's avatar
thomwolf committed
113
114

        def prepare_config_and_inputs(self):
thomwolf's avatar
thomwolf committed
115
116
117
            input_ids_1 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
            input_ids_2 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
            segment_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
thomwolf's avatar
thomwolf committed
118
            input_mask = ids_tensor([self.batch_size, self.seq_length], 2).float()
thomwolf's avatar
thomwolf committed
119

thomwolf's avatar
thomwolf committed
120
            input_ids_q = ids_tensor([self.batch_size, self.seq_length + 1], self.vocab_size)
121
            perm_mask = torch.zeros(
patrickvonplaten's avatar
patrickvonplaten committed
122
                self.batch_size, self.seq_length + 1, self.seq_length + 1, dtype=torch.float, device=torch_device,
123
            )
124
            perm_mask[:, :, -1] = 1.0  # Previous tokens don't see last token
125
            target_mapping = torch.zeros(
patrickvonplaten's avatar
patrickvonplaten committed
126
                self.batch_size, 1, self.seq_length + 1, dtype=torch.float, device=torch_device,
127
            )
128
129
            target_mapping[:, 0, -1] = 1.0  # predict last token

thomwolf's avatar
thomwolf committed
130
            sequence_labels = None
thomwolf's avatar
thomwolf committed
131
            lm_labels = None
thomwolf's avatar
thomwolf committed
132
            is_impossible_labels = None
133
            token_labels = None
thomwolf's avatar
thomwolf committed
134
            if self.use_labels:
thomwolf's avatar
thomwolf committed
135
                lm_labels = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
thomwolf's avatar
thomwolf committed
136
137
                sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
                is_impossible_labels = ids_tensor([self.batch_size], 2).float()
138
                token_labels = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
thomwolf's avatar
thomwolf committed
139
140

            config = XLNetConfig(
thomwolf's avatar
thomwolf committed
141
                vocab_size=self.vocab_size,
thomwolf's avatar
thomwolf committed
142
143
                d_model=self.hidden_size,
                n_head=self.num_attention_heads,
thomwolf's avatar
thomwolf committed
144
                d_inner=self.d_inner,
thomwolf's avatar
thomwolf committed
145
                n_layer=self.num_hidden_layers,
thomwolf's avatar
thomwolf committed
146
147
148
149
150
                untie_r=self.untie_r,
                mem_len=self.mem_len,
                clamp_len=self.clamp_len,
                same_length=self.same_length,
                reuse_len=self.reuse_len,
151
                bi_data=self.bi_data,
thomwolf's avatar
thomwolf committed
152
                initializer_range=self.initializer_range,
153
                num_labels=self.type_sequence_label_size,
154
155
156
                bos_token_id=self.bos_token_id,
                pad_token_id=self.pad_token_id,
                eos_token_id=self.eos_token_id,
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
            )

            return (
                config,
                input_ids_1,
                input_ids_2,
                input_ids_q,
                perm_mask,
                input_mask,
                target_mapping,
                segment_ids,
                lm_labels,
                sequence_labels,
                is_impossible_labels,
                token_labels,
            )
thomwolf's avatar
thomwolf committed
173
174
175
176
177

        def set_seed(self):
            random.seed(self.seed)
            torch.manual_seed(self.seed)

178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
        def create_and_check_xlnet_base_model(
            self,
            config,
            input_ids_1,
            input_ids_2,
            input_ids_q,
            perm_mask,
            input_mask,
            target_mapping,
            segment_ids,
            lm_labels,
            sequence_labels,
            is_impossible_labels,
            token_labels,
        ):
thomwolf's avatar
thomwolf committed
193
            model = XLNetModel(config)
194
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
195
196
            model.eval()

thomwolf's avatar
thomwolf committed
197
198
            _, _ = model(input_ids_1, input_mask=input_mask)
            _, _ = model(input_ids_1, attention_mask=input_mask)
thomwolf's avatar
thomwolf committed
199
200
201
202
203
204
205
206
            _, _ = model(input_ids_1, token_type_ids=segment_ids)
            outputs, mems_1 = model(input_ids_1)

            result = {
                "mems_1": mems_1,
                "outputs": outputs,
            }

thomwolf's avatar
thomwolf committed
207
208
            config.mem_len = 0
            model = XLNetModel(config)
209
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
210
            model.eval()
211
212
213
            no_mems_outputs = model(input_ids_1)
            self.parent.assertEqual(len(no_mems_outputs), 1)

thomwolf's avatar
thomwolf committed
214
            self.parent.assertListEqual(
patrickvonplaten's avatar
patrickvonplaten committed
215
                list(result["outputs"].size()), [self.batch_size, self.seq_length, self.hidden_size],
216
            )
thomwolf's avatar
thomwolf committed
217
218
            self.parent.assertListEqual(
                list(list(mem.size()) for mem in result["mems_1"]),
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
                [[self.seq_length, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
            )

        def create_and_check_xlnet_base_model_with_att_output(
            self,
            config,
            input_ids_1,
            input_ids_2,
            input_ids_q,
            perm_mask,
            input_mask,
            target_mapping,
            segment_ids,
            lm_labels,
            sequence_labels,
            is_impossible_labels,
            token_labels,
        ):
237
            model = XLNetModel(config)
238
            model.to(torch_device)
239
240
            model.eval()

241
            _, _, attentions = model(input_ids_1, target_mapping=target_mapping, output_attentions=True)
242
243
244
245
246
247

            self.parent.assertEqual(len(attentions), config.n_layer)
            self.parent.assertIsInstance(attentions[0], tuple)
            self.parent.assertEqual(len(attentions[0]), 2)
            self.parent.assertTrue(attentions[0][0].shape, attentions[0][0].shape)

248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
        def create_and_check_xlnet_lm_head(
            self,
            config,
            input_ids_1,
            input_ids_2,
            input_ids_q,
            perm_mask,
            input_mask,
            target_mapping,
            segment_ids,
            lm_labels,
            sequence_labels,
            is_impossible_labels,
            token_labels,
        ):
thomwolf's avatar
thomwolf committed
263
            model = XLNetLMHeadModel(config)
264
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
265
266
            model.eval()

thomwolf's avatar
thomwolf committed
267
            loss_1, all_logits_1, mems_1 = model(input_ids_1, token_type_ids=segment_ids, labels=lm_labels)
thomwolf's avatar
thomwolf committed
268

269
270
271
            loss_2, all_logits_2, mems_2 = model(
                input_ids_2, token_type_ids=segment_ids, labels=lm_labels, mems=mems_1
            )
272

273
            logits, _ = model(input_ids_q, perm_mask=perm_mask, target_mapping=target_mapping)
thomwolf's avatar
thomwolf committed
274

thomwolf's avatar
thomwolf committed
275
            result = {
thomwolf's avatar
thomwolf committed
276
                "loss_1": loss_1,
thomwolf's avatar
thomwolf committed
277
                "mems_1": mems_1,
278
                "all_logits_1": all_logits_1,
thomwolf's avatar
thomwolf committed
279
                "loss_2": loss_2,
thomwolf's avatar
thomwolf committed
280
                "mems_2": mems_2,
281
                "all_logits_2": all_logits_2,
thomwolf's avatar
thomwolf committed
282
283
            }

284
            self.parent.assertListEqual(list(result["loss_1"].size()), [])
thomwolf's avatar
thomwolf committed
285
            self.parent.assertListEqual(
patrickvonplaten's avatar
patrickvonplaten committed
286
                list(result["all_logits_1"].size()), [self.batch_size, self.seq_length, self.vocab_size],
287
            )
thomwolf's avatar
thomwolf committed
288
            self.parent.assertListEqual(
thomwolf's avatar
thomwolf committed
289
                list(list(mem.size()) for mem in result["mems_1"]),
290
291
                [[self.seq_length, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
            )
thomwolf's avatar
thomwolf committed
292

293
            self.parent.assertListEqual(list(result["loss_2"].size()), [])
thomwolf's avatar
thomwolf committed
294
            self.parent.assertListEqual(
patrickvonplaten's avatar
patrickvonplaten committed
295
                list(result["all_logits_2"].size()), [self.batch_size, self.seq_length, self.vocab_size],
296
            )
thomwolf's avatar
thomwolf committed
297
            self.parent.assertListEqual(
thomwolf's avatar
thomwolf committed
298
                list(list(mem.size()) for mem in result["mems_2"]),
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
                [[self.mem_len, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
            )

        def create_and_check_xlnet_qa(
            self,
            config,
            input_ids_1,
            input_ids_2,
            input_ids_q,
            perm_mask,
            input_mask,
            target_mapping,
            segment_ids,
            lm_labels,
            sequence_labels,
            is_impossible_labels,
            token_labels,
        ):
thomwolf's avatar
thomwolf committed
317
            model = XLNetForQuestionAnswering(config)
318
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
319
320
321
            model.eval()

            outputs = model(input_ids_1)
patrickvonplaten's avatar
patrickvonplaten committed
322
            (start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits, mems,) = outputs
thomwolf's avatar
thomwolf committed
323

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
            outputs = model(
                input_ids_1,
                start_positions=sequence_labels,
                end_positions=sequence_labels,
                cls_index=sequence_labels,
                is_impossible=is_impossible_labels,
                p_mask=input_mask,
            )

            outputs = model(
                input_ids_1,
                start_positions=sequence_labels,
                end_positions=sequence_labels,
                cls_index=sequence_labels,
                is_impossible=is_impossible_labels,
            )
thomwolf's avatar
thomwolf committed
340

341
            total_loss, mems = outputs
thomwolf's avatar
thomwolf committed
342

patrickvonplaten's avatar
patrickvonplaten committed
343
            outputs = model(input_ids_1, start_positions=sequence_labels, end_positions=sequence_labels,)
thomwolf's avatar
thomwolf committed
344

345
            total_loss, mems = outputs
thomwolf's avatar
thomwolf committed
346
347
348

            result = {
                "loss": total_loss,
349
350
351
352
                "start_top_log_probs": start_top_log_probs,
                "start_top_index": start_top_index,
                "end_top_log_probs": end_top_log_probs,
                "end_top_index": end_top_index,
thomwolf's avatar
thomwolf committed
353
354
355
356
                "cls_logits": cls_logits,
                "mems": mems,
            }

357
            self.parent.assertListEqual(list(result["loss"].size()), [])
thomwolf's avatar
thomwolf committed
358
            self.parent.assertListEqual(
patrickvonplaten's avatar
patrickvonplaten committed
359
                list(result["start_top_log_probs"].size()), [self.batch_size, model.config.start_n_top],
360
            )
thomwolf's avatar
thomwolf committed
361
            self.parent.assertListEqual(
patrickvonplaten's avatar
patrickvonplaten committed
362
                list(result["start_top_index"].size()), [self.batch_size, model.config.start_n_top],
363
            )
364
365
            self.parent.assertListEqual(
                list(result["end_top_log_probs"].size()),
366
367
                [self.batch_size, model.config.start_n_top * model.config.end_n_top],
            )
368
369
            self.parent.assertListEqual(
                list(result["end_top_index"].size()),
370
371
372
                [self.batch_size, model.config.start_n_top * model.config.end_n_top],
            )
            self.parent.assertListEqual(list(result["cls_logits"].size()), [self.batch_size])
thomwolf's avatar
thomwolf committed
373
374
            self.parent.assertListEqual(
                list(list(mem.size()) for mem in result["mems"]),
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
                [[self.seq_length, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
            )

        def create_and_check_xlnet_token_classif(
            self,
            config,
            input_ids_1,
            input_ids_2,
            input_ids_q,
            perm_mask,
            input_mask,
            target_mapping,
            segment_ids,
            lm_labels,
            sequence_labels,
            is_impossible_labels,
            token_labels,
        ):
393
            model = XLNetForTokenClassification(config)
394
            model.to(torch_device)
395
396
397
398
399
400
401
402
403
404
405
            model.eval()

            logits, mems_1 = model(input_ids_1)
            loss, logits, mems_1 = model(input_ids_1, labels=token_labels)

            result = {
                "loss": loss,
                "mems_1": mems_1,
                "logits": logits,
            }

406
            self.parent.assertListEqual(list(result["loss"].size()), [])
407
            self.parent.assertListEqual(
patrickvonplaten's avatar
patrickvonplaten committed
408
                list(result["logits"].size()), [self.batch_size, self.seq_length, self.type_sequence_label_size],
409
            )
410
411
            self.parent.assertListEqual(
                list(list(mem.size()) for mem in result["mems_1"]),
412
413
                [[self.seq_length, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
            )
414

415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
        def create_and_check_xlnet_sequence_classif(
            self,
            config,
            input_ids_1,
            input_ids_2,
            input_ids_q,
            perm_mask,
            input_mask,
            target_mapping,
            segment_ids,
            lm_labels,
            sequence_labels,
            is_impossible_labels,
            token_labels,
        ):
thomwolf's avatar
thomwolf committed
430
            model = XLNetForSequenceClassification(config)
431
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
432
433
434
435
436
437
438
439
440
441
442
            model.eval()

            logits, mems_1 = model(input_ids_1)
            loss, logits, mems_1 = model(input_ids_1, labels=sequence_labels)

            result = {
                "loss": loss,
                "mems_1": mems_1,
                "logits": logits,
            }

443
            self.parent.assertListEqual(list(result["loss"].size()), [])
thomwolf's avatar
thomwolf committed
444
            self.parent.assertListEqual(
patrickvonplaten's avatar
patrickvonplaten committed
445
                list(result["logits"].size()), [self.batch_size, self.type_sequence_label_size],
446
            )
thomwolf's avatar
thomwolf committed
447
448
            self.parent.assertListEqual(
                list(list(mem.size()) for mem in result["mems_1"]),
449
450
                [[self.seq_length, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
            )
thomwolf's avatar
thomwolf committed
451

thomwolf's avatar
thomwolf committed
452
453
        def prepare_config_and_inputs_for_common(self):
            config_and_inputs = self.prepare_config_and_inputs()
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
            (
                config,
                input_ids_1,
                input_ids_2,
                input_ids_q,
                perm_mask,
                input_mask,
                target_mapping,
                segment_ids,
                lm_labels,
                sequence_labels,
                is_impossible_labels,
                token_labels,
            ) = config_and_inputs
            inputs_dict = {"input_ids": input_ids_1}
thomwolf's avatar
thomwolf committed
469
470
471
472
473
            return config, inputs_dict

    def setUp(self):
        self.model_tester = XLNetModelTest.XLNetModelTester(self)
        self.config_tester = ConfigTester(self, config_class=XLNetConfig, d_inner=37)
thomwolf's avatar
thomwolf committed
474

thomwolf's avatar
thomwolf committed
475
    def test_config(self):
thomwolf's avatar
thomwolf committed
476
477
478
479
480
481
482
        self.config_tester.run_common_tests()

    def test_xlnet_base_model(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlnet_base_model(*config_and_inputs)

483
484
485
486
487
    def test_xlnet_base_model_with_att_output(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlnet_base_model_with_att_output(*config_and_inputs)

thomwolf's avatar
thomwolf committed
488
489
490
    def test_xlnet_lm_head(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
491
        self.model_tester.create_and_check_xlnet_lm_head(*config_and_inputs)
thomwolf's avatar
thomwolf committed
492
493
494
495
496
497

    def test_xlnet_sequence_classif(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlnet_sequence_classif(*config_and_inputs)

498
499
500
501
502
    def test_xlnet_token_classif(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlnet_token_classif(*config_and_inputs)

thomwolf's avatar
thomwolf committed
503
504
505
506
    def test_xlnet_qa(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlnet_qa(*config_and_inputs)
thomwolf's avatar
thomwolf committed
507

508
    @slow
thomwolf's avatar
thomwolf committed
509
    def test_model_from_pretrained(self):
510
        for model_name in XLNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
511
            model = XLNetModel.from_pretrained(model_name)
thomwolf's avatar
thomwolf committed
512
            self.assertIsNotNone(model)
513
514


515
@require_torch
516
517
518
519
class XLNetModelLanguageGenerationTest(unittest.TestCase):
    @slow
    def test_lm_generate_xlnet_base_cased(self):
        model = XLNetLMHeadModel.from_pretrained("xlnet-base-cased")
520
        model.to(torch_device)
patrickvonplaten's avatar
patrickvonplaten committed
521
        input_ids = torch.tensor(
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
            [
                [
                    67,
                    2840,
                    19,
                    18,
                    1484,
                    20,
                    965,
                    29077,
                    8719,
                    1273,
                    21,
                    45,
                    273,
                    17,
                    10,
                    15048,
                    28,
                    27511,
                    21,
                    4185,
                    11,
                    41,
                    2444,
                    9,
                    32,
                    1025,
                    20,
                    8719,
                    26,
                    23,
                    673,
                    966,
                    19,
                    29077,
                    20643,
                    27511,
                    20822,
                    20643,
                    19,
                    17,
                    6616,
                    17511,
                    18,
                    8978,
                    20,
                    18,
                    777,
                    9,
                    19233,
                    1527,
                    17669,
                    19,
                    24,
                    673,
                    17,
                    28756,
                    150,
                    12943,
                    4354,
                    153,
                    27,
                    442,
                    37,
                    45,
                    668,
                    21,
                    24,
                    256,
                    20,
                    416,
                    22,
                    2771,
                    4901,
                    9,
                    12943,
                    4354,
                    153,
                    51,
                    24,
                    3004,
                    21,
                    28142,
                    23,
                    65,
                    20,
                    18,
                    416,
                    34,
                    24,
                    2958,
                    22947,
                    9,
                    1177,
                    45,
                    668,
                    3097,
                    13768,
                    23,
                    103,
                    28,
                    441,
                    148,
                    48,
                    20522,
                    19,
                    12943,
                    4354,
                    153,
                    12860,
                    34,
                    18,
                    326,
                    27,
                    17492,
                    684,
                    21,
                    6709,
                    9,
                    8585,
                    123,
                    266,
                    19,
                    12943,
                    4354,
                    153,
                    6872,
                    24,
                    3004,
                    20,
                    18,
                    9225,
                    2198,
                    19,
                    12717,
                    103,
                    22,
                    401,
                    24,
                    6348,
                    9,
                    12943,
                    4354,
                    153,
                    1068,
                    2768,
                    2286,
                    19,
                    33,
                    104,
                    19,
                    176,
                    24,
                    9313,
                    19,
                    20086,
                    28,
                    45,
                    10292,
                    9,
                    4,
                    3,
                ]
patrickvonplaten's avatar
patrickvonplaten committed
686
687
688
689
            ],
            dtype=torch.long,
            device=torch_device,
        )
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
        #  In 1991, the remains of Russian Tsar Nicholas II and his family
        #  (except for Alexei and Maria) are discovered.
        #  The voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the
        #  remainder of the story. 1883 Western Siberia,
        #  a young Grigori Rasputin is asked by his father and a group of men to perform magic.
        #  Rasputin has a vision and denounces one of the men as a horse thief. Although his
        #  father initially slaps him for making such an accusation, Rasputin watches as the
        #  man is chased outside and beaten. Twenty years later, Rasputin sees a vision of
        #  the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous,
        #  with people, even a bishop, begging for his blessing. """

        expected_output_ids = [
            67,
            2840,
            19,
            18,
            1484,
            20,
            965,
            29077,
            8719,
            1273,
            21,
            45,
            273,
            17,
            10,
            15048,
            28,
            27511,
            21,
            4185,
            11,
            41,
            2444,
            9,
            32,
            1025,
            20,
            8719,
            26,
            23,
            673,
            966,
            19,
            29077,
            20643,
            27511,
            20822,
            20643,
            19,
            17,
            6616,
            17511,
            18,
            8978,
            20,
            18,
            777,
            9,
            19233,
            1527,
            17669,
            19,
            24,
            673,
            17,
            28756,
            150,
            12943,
            4354,
            153,
            27,
            442,
            37,
            45,
            668,
            21,
            24,
            256,
            20,
            416,
            22,
            2771,
            4901,
            9,
            12943,
            4354,
            153,
            51,
            24,
            3004,
            21,
            28142,
            23,
            65,
            20,
            18,
            416,
            34,
            24,
            2958,
            22947,
            9,
            1177,
            45,
            668,
            3097,
            13768,
            23,
            103,
            28,
            441,
            148,
            48,
            20522,
            19,
            12943,
            4354,
            153,
            12860,
            34,
            18,
            326,
            27,
            17492,
            684,
            21,
            6709,
            9,
            8585,
            123,
            266,
            19,
            12943,
            4354,
            153,
            6872,
            24,
            3004,
            20,
            18,
            9225,
            2198,
            19,
            12717,
            103,
            22,
            401,
            24,
            6348,
            9,
            12943,
            4354,
            153,
            1068,
            2768,
            2286,
            19,
            33,
            104,
            19,
            176,
            24,
            9313,
            19,
            20086,
            28,
            45,
            10292,
            9,
            4,
            3,
            19,
patrickvonplaten's avatar
patrickvonplaten committed
864
865
866
            12943,
            4354,
            153,
867
868
869
870
871
872
            27,
            442,
            22,
            2771,
            4901,
            9,
patrickvonplaten's avatar
patrickvonplaten committed
873
874
875
876
877
878
879
            69,
            27,
            50,
            551,
            22,
            2771,
            4901,
880
            19,
patrickvonplaten's avatar
patrickvonplaten committed
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
            21,
            45,
            668,
            21,
            18,
            416,
            41,
            1499,
            22,
            755,
            18,
            14285,
            9,
            12943,
            4354,
            153,
            27,
            1499,
            22,
            642,
            22,
902
903
904
905
906
907
908
909
910
        ]
        #  In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria)
        #  are discovered. The voice of Nicholas's young son, Tsarevich Alexei Nikolaevich,
        #  narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin
        #  is asked by his father and a group of men to perform magic. Rasputin has a vision and
        #  denounces one of the men as a horse thief. Although his father initially slaps
        #  him for making such an accusation, Rasputin watches as the man is chased outside and beaten.
        #  Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest.
        #  Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing.
patrickvonplaten's avatar
patrickvonplaten committed
911
912
913
        #  <sep><cls>, Rasputin is asked to perform magic.
        #  He is not able to perform magic, and his father and
        # the men are forced to leave the monastery. Rasputin is forced to return to
914

patrickvonplaten's avatar
patrickvonplaten committed
915
        output_ids = model.generate(input_ids, max_length=200, do_sample=False)
916
        self.assertListEqual(output_ids[0].tolist(), expected_output_ids)