test_modeling_tf_albert.py 9.9 KB
Newer Older
Lysandre's avatar
Lysandre committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

Lysandre's avatar
Lysandre committed
16

17
18
import unittest

Aymeric Augustin's avatar
Aymeric Augustin committed
19
from transformers import AlbertConfig, is_tf_available
Lysandre's avatar
Lysandre committed
20

21
from .test_configuration_common import ConfigTester
22
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor
23
from .utils import CACHE_DIR, require_tf, slow
Lysandre's avatar
Lysandre committed
24
25
26


if is_tf_available():
27
28
29
30
    from transformers.modeling_tf_albert import (
        TFAlbertModel,
        TFAlbertForMaskedLM,
        TFAlbertForSequenceClassification,
31
        TFAlbertForQuestionAnswering,
32
33
        TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_MAP,
    )
Lysandre's avatar
Lysandre committed
34
35


36
@require_tf
37
class TFAlbertModelTest(TFModelTesterMixin, unittest.TestCase):
Lysandre's avatar
Lysandre committed
38
39

    all_model_classes = (
40
41
42
        (TFAlbertModel, TFAlbertForMaskedLM, TFAlbertForSequenceClassification, TFAlbertForQuestionAnswering)
        if is_tf_available()
        else ()
43
    )
Lysandre's avatar
Lysandre committed
44
45

    class TFAlbertModelTester(object):
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
        def __init__(
            self,
            parent,
            batch_size=13,
            seq_length=7,
            is_training=True,
            use_input_mask=True,
            use_token_type_ids=True,
            use_labels=True,
            vocab_size=99,
            embedding_size=16,
            hidden_size=32,
            num_hidden_layers=5,
            num_attention_heads=4,
            intermediate_size=37,
            hidden_act="gelu",
            hidden_dropout_prob=0.1,
            attention_probs_dropout_prob=0.1,
            max_position_embeddings=512,
            type_vocab_size=16,
            type_sequence_label_size=2,
            initializer_range=0.02,
            num_labels=3,
            num_choices=4,
            scope=None,
        ):
Lysandre's avatar
Lysandre committed
72
73
74
75
76
77
78
79
            self.parent = parent
            self.batch_size = batch_size
            self.seq_length = seq_length
            self.is_training = is_training
            self.use_input_mask = use_input_mask
            self.use_token_type_ids = use_token_type_ids
            self.use_labels = use_labels
            self.vocab_size = vocab_size
Lysandre's avatar
Lysandre committed
80
            self.embedding_size = embedding_size
Lysandre's avatar
Lysandre committed
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
            self.hidden_size = hidden_size
            self.num_hidden_layers = num_hidden_layers
            self.num_attention_heads = num_attention_heads
            self.intermediate_size = intermediate_size
            self.hidden_act = hidden_act
            self.hidden_dropout_prob = hidden_dropout_prob
            self.attention_probs_dropout_prob = attention_probs_dropout_prob
            self.max_position_embeddings = max_position_embeddings
            self.type_vocab_size = type_vocab_size
            self.type_sequence_label_size = type_sequence_label_size
            self.initializer_range = initializer_range
            self.num_labels = num_labels
            self.num_choices = num_choices
            self.scope = scope

        def prepare_config_and_inputs(self):
97
            input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
Lysandre's avatar
Lysandre committed
98
99
100

            input_mask = None
            if self.use_input_mask:
101
                input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
Lysandre's avatar
Lysandre committed
102
103
104

            token_type_ids = None
            if self.use_token_type_ids:
105
                token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
Lysandre's avatar
Lysandre committed
106
107
108
109
110

            sequence_labels = None
            token_labels = None
            choice_labels = None
            if self.use_labels:
111
112
                sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
                token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
Lysandre's avatar
Lysandre committed
113
114
115
                choice_labels = ids_tensor([self.batch_size], self.num_choices)

            config = AlbertConfig(
thomwolf's avatar
thomwolf committed
116
                vocab_size=self.vocab_size,
Lysandre's avatar
Lysandre committed
117
118
119
120
121
122
123
124
125
                hidden_size=self.hidden_size,
                num_hidden_layers=self.num_hidden_layers,
                num_attention_heads=self.num_attention_heads,
                intermediate_size=self.intermediate_size,
                hidden_act=self.hidden_act,
                hidden_dropout_prob=self.hidden_dropout_prob,
                attention_probs_dropout_prob=self.attention_probs_dropout_prob,
                max_position_embeddings=self.max_position_embeddings,
                type_vocab_size=self.type_vocab_size,
126
127
                initializer_range=self.initializer_range,
            )
Lysandre's avatar
Lysandre committed
128
129
130

            return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

131
132
133
        def create_and_check_albert_model(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
Lysandre's avatar
Lysandre committed
134
135
136
137
138
            model = TFAlbertModel(config=config)
            # inputs = {'input_ids': input_ids,
            #           'attention_mask': input_mask,
            #           'token_type_ids': token_type_ids}
            # sequence_output, pooled_output = model(**inputs)
139
            inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Lysandre's avatar
Lysandre committed
140
141
142
143
144
145
146
147
148
149
150
151
            sequence_output, pooled_output = model(inputs)

            inputs = [input_ids, input_mask]
            sequence_output, pooled_output = model(inputs)

            sequence_output, pooled_output = model(input_ids)

            result = {
                "sequence_output": sequence_output.numpy(),
                "pooled_output": pooled_output.numpy(),
            }
            self.parent.assertListEqual(
152
153
154
                list(result["sequence_output"].shape), [self.batch_size, self.seq_length, self.hidden_size]
            )
            self.parent.assertListEqual(list(result["pooled_output"].shape), [self.batch_size, self.hidden_size])
Lysandre's avatar
Lysandre committed
155

156
157
158
        def create_and_check_albert_for_masked_lm(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
Lysandre's avatar
Lysandre committed
159
            model = TFAlbertForMaskedLM(config=config)
160
161
            inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
            (prediction_scores,) = model(inputs)
Lysandre's avatar
Lysandre committed
162
163
164
165
            result = {
                "prediction_scores": prediction_scores.numpy(),
            }
            self.parent.assertListEqual(
166
167
                list(result["prediction_scores"].shape), [self.batch_size, self.seq_length, self.vocab_size]
            )
Lysandre's avatar
Lysandre committed
168

169
170
171
        def create_and_check_albert_for_sequence_classification(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
Lysandre's avatar
Lysandre committed
172
173
            config.num_labels = self.num_labels
            model = TFAlbertForSequenceClassification(config=config)
174
175
            inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
            (logits,) = model(inputs)
Lysandre's avatar
Lysandre committed
176
177
178
            result = {
                "logits": logits.numpy(),
            }
179
            self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.num_labels])
Lysandre's avatar
Lysandre committed
180

181
182
183
184
185
186
187
188
189
190
191
192
193
        def create_and_check_albert_for_question_answering(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
            model = TFAlbertForQuestionAnswering(config=config)
            inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
            start_logits, end_logits = model(inputs)
            result = {
                "start_logits": start_logits.numpy(),
                "end_logits": end_logits.numpy(),
            }
            self.parent.assertListEqual(list(result["start_logits"].shape), [self.batch_size, self.seq_length])
            self.parent.assertListEqual(list(result["end_logits"].shape), [self.batch_size, self.seq_length])

Lysandre's avatar
Lysandre committed
194
195
        def prepare_config_and_inputs_for_common(self):
            config_and_inputs = self.prepare_config_and_inputs()
196
197
198
199
200
201
202
203
204
205
            (
                config,
                input_ids,
                token_type_ids,
                input_mask,
                sequence_labels,
                token_labels,
                choice_labels,
            ) = config_and_inputs
            inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
Lysandre's avatar
Lysandre committed
206
207
208
209
            return config, inputs_dict

    def setUp(self):
        self.model_tester = TFAlbertModelTest.TFAlbertModelTester(self)
210
        self.config_tester = ConfigTester(self, config_class=AlbertConfig, hidden_size=37)
Lysandre's avatar
Lysandre committed
211
212
213
214
215
216
217
218
219
220

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_albert_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_albert_model(*config_and_inputs)

    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
221
        self.model_tester.create_and_check_albert_for_masked_lm(*config_and_inputs)
Lysandre's avatar
Lysandre committed
222
223
224

    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
225
        self.model_tester.create_and_check_albert_for_sequence_classification(*config_and_inputs)
Lysandre's avatar
Lysandre committed
226

227
228
229
230
    def test_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_albert_for_question_answering(*config_and_inputs)

231
    @slow
Lysandre's avatar
Lysandre committed
232
    def test_model_from_pretrained(self):
Aymeric Augustin's avatar
Aymeric Augustin committed
233
        for model_name in list(TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
234
            model = TFAlbertModel.from_pretrained(model_name, cache_dir=CACHE_DIR)
Lysandre's avatar
Lysandre committed
235
            self.assertIsNotNone(model)