"model/vscode:/vscode.git/clone" did not exist on "522c11a7632944aa889252e9a044dea6219475d4"
test_data_collator.py 13.6 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
16
17
import os
import shutil
import tempfile
Sylvain Gugger's avatar
Sylvain Gugger committed
18
19
import unittest

20
21
from transformers import BertTokenizer, is_torch_available, set_seed
from transformers.testing_utils import require_torch
Sylvain Gugger's avatar
Sylvain Gugger committed
22
23
24
25
26
27
28
29


if is_torch_available():
    import torch

    from transformers import (
        DataCollatorForLanguageModeling,
        DataCollatorForPermutationLanguageModeling,
30
31
        DataCollatorForTokenClassification,
        DataCollatorWithPadding,
Sylvain Gugger's avatar
Sylvain Gugger committed
32
33
34
35
36
37
        default_data_collator,
    )


@require_torch
class DataCollatorIntegrationTest(unittest.TestCase):
38
39
40
41
42
43
44
45
46
47
48
    def setUp(self):
        self.tmpdirname = tempfile.mkdtemp()

        vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"]
        self.vocab_file = os.path.join(self.tmpdirname, "vocab.txt")
        with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer:
            vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))

    def tearDown(self):
        shutil.rmtree(self.tmpdirname)

Sylvain Gugger's avatar
Sylvain Gugger committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
    def test_default_with_dict(self):
        features = [{"label": i, "inputs": [0, 1, 2, 3, 4, 5]} for i in range(8)]
        batch = default_data_collator(features)
        self.assertTrue(batch["labels"].equal(torch.tensor(list(range(8)))))
        self.assertEqual(batch["labels"].dtype, torch.long)
        self.assertEqual(batch["inputs"].shape, torch.Size([8, 6]))

        # With label_ids
        features = [{"label_ids": [0, 1, 2], "inputs": [0, 1, 2, 3, 4, 5]} for i in range(8)]
        batch = default_data_collator(features)
        self.assertTrue(batch["labels"].equal(torch.tensor([[0, 1, 2]] * 8)))
        self.assertEqual(batch["labels"].dtype, torch.long)
        self.assertEqual(batch["inputs"].shape, torch.Size([8, 6]))

        # Features can already be tensors
        features = [{"label": i, "inputs": torch.randint(10, [10])} for i in range(8)]
        batch = default_data_collator(features)
        self.assertTrue(batch["labels"].equal(torch.tensor(list(range(8)))))
        self.assertEqual(batch["labels"].dtype, torch.long)
        self.assertEqual(batch["inputs"].shape, torch.Size([8, 10]))

        # Labels can already be tensors
        features = [{"label": torch.tensor(i), "inputs": torch.randint(10, [10])} for i in range(8)]
        batch = default_data_collator(features)
        self.assertEqual(batch["labels"].dtype, torch.long)
        self.assertTrue(batch["labels"].equal(torch.tensor(list(range(8)))))
        self.assertEqual(batch["labels"].dtype, torch.long)
        self.assertEqual(batch["inputs"].shape, torch.Size([8, 10]))

78
79
80
81
82
83
84
85
86
87
88
    def test_default_classification_and_regression(self):
        data_collator = default_data_collator

        features = [{"input_ids": [0, 1, 2, 3, 4], "label": i} for i in range(4)]
        batch = data_collator(features)
        self.assertEqual(batch["labels"].dtype, torch.long)

        features = [{"input_ids": [0, 1, 2, 3, 4], "label": float(i)} for i in range(4)]
        batch = data_collator(features)
        self.assertEqual(batch["labels"].dtype, torch.float)

Sylvain Gugger's avatar
Sylvain Gugger committed
89
90
91
92
93
94
95
96
97
98
99
100
    def test_default_with_no_labels(self):
        features = [{"label": None, "inputs": [0, 1, 2, 3, 4, 5]} for i in range(8)]
        batch = default_data_collator(features)
        self.assertTrue("labels" not in batch)
        self.assertEqual(batch["inputs"].shape, torch.Size([8, 6]))

        # With label_ids
        features = [{"label_ids": None, "inputs": [0, 1, 2, 3, 4, 5]} for i in range(8)]
        batch = default_data_collator(features)
        self.assertTrue("labels" not in batch)
        self.assertEqual(batch["inputs"].shape, torch.Size([8, 6]))

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
    def test_data_collator_with_padding(self):
        tokenizer = BertTokenizer(self.vocab_file)
        features = [{"input_ids": [0, 1, 2]}, {"input_ids": [0, 1, 2, 3, 4, 5]}]

        data_collator = DataCollatorWithPadding(tokenizer)
        batch = data_collator(features)
        self.assertEqual(batch["input_ids"].shape, torch.Size([2, 6]))
        self.assertEqual(batch["input_ids"][0].tolist(), [0, 1, 2] + [tokenizer.pad_token_id] * 3)

        data_collator = DataCollatorWithPadding(tokenizer, padding="max_length", max_length=10)
        batch = data_collator(features)
        self.assertEqual(batch["input_ids"].shape, torch.Size([2, 10]))

        data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8)
        batch = data_collator(features)
        self.assertEqual(batch["input_ids"].shape, torch.Size([2, 8]))

    def test_data_collator_for_token_classification(self):
        tokenizer = BertTokenizer(self.vocab_file)
        features = [
            {"input_ids": [0, 1, 2], "labels": [0, 1, 2]},
            {"input_ids": [0, 1, 2, 3, 4, 5], "labels": [0, 1, 2, 3, 4, 5]},
        ]

        data_collator = DataCollatorForTokenClassification(tokenizer)
        batch = data_collator(features)
        self.assertEqual(batch["input_ids"].shape, torch.Size([2, 6]))
        self.assertEqual(batch["input_ids"][0].tolist(), [0, 1, 2] + [tokenizer.pad_token_id] * 3)
        self.assertEqual(batch["labels"].shape, torch.Size([2, 6]))
        self.assertEqual(batch["labels"][0].tolist(), [0, 1, 2] + [-100] * 3)

        data_collator = DataCollatorForTokenClassification(tokenizer, padding="max_length", max_length=10)
        batch = data_collator(features)
        self.assertEqual(batch["input_ids"].shape, torch.Size([2, 10]))
        self.assertEqual(batch["labels"].shape, torch.Size([2, 10]))

        data_collator = DataCollatorForTokenClassification(tokenizer, pad_to_multiple_of=8)
        batch = data_collator(features)
        self.assertEqual(batch["input_ids"].shape, torch.Size([2, 8]))
        self.assertEqual(batch["labels"].shape, torch.Size([2, 8]))

        data_collator = DataCollatorForTokenClassification(tokenizer, label_pad_token_id=-1)
        batch = data_collator(features)
        self.assertEqual(batch["input_ids"].shape, torch.Size([2, 6]))
        self.assertEqual(batch["input_ids"][0].tolist(), [0, 1, 2] + [tokenizer.pad_token_id] * 3)
        self.assertEqual(batch["labels"].shape, torch.Size([2, 6]))
        self.assertEqual(batch["labels"][0].tolist(), [0, 1, 2] + [-1] * 3)

149
    def _test_no_pad_and_pad(self, no_pad_features, pad_features):
150
        tokenizer = BertTokenizer(self.vocab_file)
Sylvain Gugger's avatar
Sylvain Gugger committed
151
        data_collator = DataCollatorForLanguageModeling(tokenizer, mlm=False)
152
153
154
        batch = data_collator(no_pad_features)
        self.assertEqual(batch["input_ids"].shape, torch.Size((2, 10)))
        self.assertEqual(batch["labels"].shape, torch.Size((2, 10)))
Sylvain Gugger's avatar
Sylvain Gugger committed
155

156
157
158
        batch = data_collator(pad_features)
        self.assertEqual(batch["input_ids"].shape, torch.Size((2, 10)))
        self.assertEqual(batch["labels"].shape, torch.Size((2, 10)))
Sylvain Gugger's avatar
Sylvain Gugger committed
159

160
161
162
163
164
165
166
167
168
        data_collator = DataCollatorForLanguageModeling(tokenizer, mlm=False, pad_to_multiple_of=8)
        batch = data_collator(no_pad_features)
        self.assertEqual(batch["input_ids"].shape, torch.Size((2, 16)))
        self.assertEqual(batch["labels"].shape, torch.Size((2, 16)))

        batch = data_collator(pad_features)
        self.assertEqual(batch["input_ids"].shape, torch.Size((2, 16)))
        self.assertEqual(batch["labels"].shape, torch.Size((2, 16)))

169
170
171
172
173
        tokenizer._pad_token = None
        data_collator = DataCollatorForLanguageModeling(tokenizer, mlm=False)
        with self.assertRaises(ValueError):
            # Expect error due to padding token missing
            data_collator(pad_features)
Sylvain Gugger's avatar
Sylvain Gugger committed
174

175
176
        set_seed(42)  # For reproducibility
        tokenizer = BertTokenizer(self.vocab_file)
Sylvain Gugger's avatar
Sylvain Gugger committed
177
        data_collator = DataCollatorForLanguageModeling(tokenizer)
178
179
180
        batch = data_collator(no_pad_features)
        self.assertEqual(batch["input_ids"].shape, torch.Size((2, 10)))
        self.assertEqual(batch["labels"].shape, torch.Size((2, 10)))
Sylvain Gugger's avatar
Sylvain Gugger committed
181

182
183
184
        masked_tokens = batch["input_ids"] == tokenizer.mask_token_id
        self.assertTrue(torch.any(masked_tokens))
        self.assertTrue(all(x == -100 for x in batch["labels"][~masked_tokens].tolist()))
Sylvain Gugger's avatar
Sylvain Gugger committed
185

186
187
188
189
190
191
192
        batch = data_collator(pad_features)
        self.assertEqual(batch["input_ids"].shape, torch.Size((2, 10)))
        self.assertEqual(batch["labels"].shape, torch.Size((2, 10)))

        masked_tokens = batch["input_ids"] == tokenizer.mask_token_id
        self.assertTrue(torch.any(masked_tokens))
        self.assertTrue(all(x == -100 for x in batch["labels"][~masked_tokens].tolist()))
Sylvain Gugger's avatar
Sylvain Gugger committed
193

194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
        data_collator = DataCollatorForLanguageModeling(tokenizer, pad_to_multiple_of=8)
        batch = data_collator(no_pad_features)
        self.assertEqual(batch["input_ids"].shape, torch.Size((2, 16)))
        self.assertEqual(batch["labels"].shape, torch.Size((2, 16)))

        masked_tokens = batch["input_ids"] == tokenizer.mask_token_id
        self.assertTrue(torch.any(masked_tokens))
        self.assertTrue(all(x == -100 for x in batch["labels"][~masked_tokens].tolist()))

        batch = data_collator(pad_features)
        self.assertEqual(batch["input_ids"].shape, torch.Size((2, 16)))
        self.assertEqual(batch["labels"].shape, torch.Size((2, 16)))

        masked_tokens = batch["input_ids"] == tokenizer.mask_token_id
        self.assertTrue(torch.any(masked_tokens))
        self.assertTrue(all(x == -100 for x in batch["labels"][~masked_tokens].tolist()))

    def test_data_collator_for_language_modeling(self):
        no_pad_features = [{"input_ids": list(range(10))}, {"input_ids": list(range(10))}]
        pad_features = [{"input_ids": list(range(5))}, {"input_ids": list(range(10))}]
        self._test_no_pad_and_pad(no_pad_features, pad_features)

        no_pad_features = [list(range(10)), list(range(10))]
        pad_features = [list(range(5)), list(range(10))]
        self._test_no_pad_and_pad(no_pad_features, pad_features)

Sylvain Gugger's avatar
Sylvain Gugger committed
220
    def test_plm(self):
221
222
223
224
        tokenizer = BertTokenizer(self.vocab_file)
        no_pad_features = [{"input_ids": list(range(10))}, {"input_ids": list(range(10))}]
        pad_features = [{"input_ids": list(range(5))}, {"input_ids": list(range(10))}]

Sylvain Gugger's avatar
Sylvain Gugger committed
225
226
        data_collator = DataCollatorForPermutationLanguageModeling(tokenizer)

227
        batch = data_collator(pad_features)
Sylvain Gugger's avatar
Sylvain Gugger committed
228
        self.assertIsInstance(batch, dict)
229
230
231
232
233
234
        self.assertEqual(batch["input_ids"].shape, torch.Size((2, 10)))
        self.assertEqual(batch["perm_mask"].shape, torch.Size((2, 10, 10)))
        self.assertEqual(batch["target_mapping"].shape, torch.Size((2, 10, 10)))
        self.assertEqual(batch["labels"].shape, torch.Size((2, 10)))

        batch = data_collator(no_pad_features)
Sylvain Gugger's avatar
Sylvain Gugger committed
235
        self.assertIsInstance(batch, dict)
236
237
238
239
        self.assertEqual(batch["input_ids"].shape, torch.Size((2, 10)))
        self.assertEqual(batch["perm_mask"].shape, torch.Size((2, 10, 10)))
        self.assertEqual(batch["target_mapping"].shape, torch.Size((2, 10, 10)))
        self.assertEqual(batch["labels"].shape, torch.Size((2, 10)))
Sylvain Gugger's avatar
Sylvain Gugger committed
240
241
242
243
244

        example = [torch.randint(5, [5])]
        with self.assertRaises(ValueError):
            # Expect error due to odd sequence length
            data_collator(example)
245
246

    def test_nsp(self):
247
        tokenizer = BertTokenizer(self.vocab_file)
248
249
250
251
252
        features = [
            {"input_ids": [0, 1, 2, 3, 4], "token_type_ids": [0, 1, 2, 3, 4], "next_sentence_label": i}
            for i in range(2)
        ]
        data_collator = DataCollatorForLanguageModeling(tokenizer)
253
        batch = data_collator(features)
254

255
256
257
        self.assertEqual(batch["input_ids"].shape, torch.Size((2, 5)))
        self.assertEqual(batch["token_type_ids"].shape, torch.Size((2, 5)))
        self.assertEqual(batch["labels"].shape, torch.Size((2, 5)))
258
        self.assertEqual(batch["next_sentence_label"].shape, torch.Size((2,)))
259

260
261
262
263
264
265
266
267
        data_collator = DataCollatorForLanguageModeling(tokenizer, pad_to_multiple_of=8)
        batch = data_collator(features)

        self.assertEqual(batch["input_ids"].shape, torch.Size((2, 8)))
        self.assertEqual(batch["token_type_ids"].shape, torch.Size((2, 8)))
        self.assertEqual(batch["labels"].shape, torch.Size((2, 8)))
        self.assertEqual(batch["next_sentence_label"].shape, torch.Size((2,)))

268
    def test_sop(self):
269
270
271
272
273
        tokenizer = BertTokenizer(self.vocab_file)
        features = [
            {
                "input_ids": torch.tensor([0, 1, 2, 3, 4]),
                "token_type_ids": torch.tensor([0, 1, 2, 3, 4]),
274
                "sentence_order_label": i,
275
276
277
            }
            for i in range(2)
        ]
278
        data_collator = DataCollatorForLanguageModeling(tokenizer)
279
        batch = data_collator(features)
280

281
282
283
284
        self.assertEqual(batch["input_ids"].shape, torch.Size((2, 5)))
        self.assertEqual(batch["token_type_ids"].shape, torch.Size((2, 5)))
        self.assertEqual(batch["labels"].shape, torch.Size((2, 5)))
        self.assertEqual(batch["sentence_order_label"].shape, torch.Size((2,)))
285
286
287
288
289
290
291
292

        data_collator = DataCollatorForLanguageModeling(tokenizer, pad_to_multiple_of=8)
        batch = data_collator(features)

        self.assertEqual(batch["input_ids"].shape, torch.Size((2, 8)))
        self.assertEqual(batch["token_type_ids"].shape, torch.Size((2, 8)))
        self.assertEqual(batch["labels"].shape, torch.Size((2, 8)))
        self.assertEqual(batch["sentence_order_label"].shape, torch.Size((2,)))