"tests/test_modeling_tf_auto.py" did not exist on "067395d5c56ef9026c442e691b6458ac196e3cf9"
modeling_openai.py 34.3 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch OpenAI GPT model."""

18
19
from __future__ import absolute_import, division, print_function, unicode_literals

20
import collections
thomwolf's avatar
thomwolf committed
21
import json
thomwolf's avatar
thomwolf committed
22
import logging
23
24
import math
import os
thomwolf's avatar
thomwolf committed
25
26
import sys
from io import open
thomwolf's avatar
thomwolf committed
27
28
29

import torch
import torch.nn as nn
thomwolf's avatar
thomwolf committed
30
from torch.nn import CrossEntropyLoss
thomwolf's avatar
thomwolf committed
31
32
from torch.nn.parameter import Parameter

33
from .modeling_utils import (Conv1D, CONFIG_NAME, WEIGHTS_NAME, PretrainedConfig,
34
                             PreTrainedModel, prune_conv1d_layer, SequenceSummary)
thomwolf's avatar
thomwolf committed
35
from .modeling_bert import BertLayerNorm as LayerNorm
thomwolf's avatar
thomwolf committed
36

thomwolf's avatar
thomwolf committed
37
38
logger = logging.getLogger(__name__)

39
40
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP = {"openai-gpt": "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-pytorch_model.bin"}
OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP = {"openai-gpt": "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-config.json"}
41

42

43
def load_tf_weights_in_openai_gpt(model, config, openai_checkpoint_folder_path):
44
45
    """ Load tf pre-trained weights in a pytorch model (from NumPy arrays here)
    """
46
47
    import re
    import numpy as np
48
49
50
51
52
53

    if '.ckpt' in openai_checkpoint_folder_path:
        openai_checkpoint_folder_path = os.path.dirname(openai_checkpoint_folder_path)

    logger.info("Loading weights from {}".format(openai_checkpoint_folder_path))

54
55
56
57
58
59
60
    names = json.load(open(openai_checkpoint_folder_path + '/parameters_names.json', "r", encoding='utf-8'))
    shapes = json.load(open(openai_checkpoint_folder_path + '/params_shapes.json', "r", encoding='utf-8'))
    offsets = np.cumsum([np.prod(shape) for shape in shapes])
    init_params = [np.load(openai_checkpoint_folder_path + '/params_{}.npy'.format(n)) for n in range(10)]
    init_params = np.split(np.concatenate(init_params, 0), offsets)[:-1]
    init_params = [param.reshape(shape) for param, shape in zip(init_params, shapes)]

thomwolf's avatar
thomwolf committed
61
    # This was used when we had a single embedding matrix for positions and tokens
62
63
    # init_params[0] = np.concatenate([init_params[1], init_params[0]], 0)
    # del init_params[1]
64
65
66
    init_params = [arr.squeeze() for arr in init_params]

    try:
67
68
        assert model.tokens_embed.weight.shape == init_params[1].shape
        assert model.positions_embed.weight.shape == init_params[0].shape
69
    except AssertionError as e:
70
71
        e.args += (model.tokens_embed.weight.shape, init_params[1].shape)
        e.args += (model.positions_embed.weight.shape, init_params[0].shape)
72
73
        raise

74
75
    model.tokens_embed.weight.data = torch.from_numpy(init_params[1])
    model.positions_embed.weight.data = torch.from_numpy(init_params[0])
76
    names.pop(0)
77
78
    # Pop position and token embedding arrays
    init_params.pop(0)
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
    init_params.pop(0)

    for name, array in zip(names, init_params): # names[1:n_transfer], init_params[1:n_transfer]):
        name = name[6:]  # skip "model/"
        assert name[-2:] == ":0"
        name = name[:-2]
        name = name.split('/')
        pointer = model
        for m_name in name:
            if re.fullmatch(r'[A-Za-z]+\d+', m_name):
                l = re.split(r'(\d+)', m_name)
            else:
                l = [m_name]
            if l[0] == 'g':
                pointer = getattr(pointer, 'weight')
            elif l[0] == 'b':
                pointer = getattr(pointer, 'bias')
            elif l[0] == 'w':
                pointer = getattr(pointer, 'weight')
            else:
                pointer = getattr(pointer, l[0])
            if len(l) >= 2:
                num = int(l[1])
                pointer = pointer[num]
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
thomwolf's avatar
thomwolf committed
113
        logger.info("Initialize PyTorch weight {}".format(name))
114
115
116
        pointer.data = torch.from_numpy(array)
    return model

thomwolf's avatar
thomwolf committed
117
118
119
120
121
122
123
124
125

def gelu(x):
    return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))


def swish(x):
    return x * torch.sigmoid(x)


126
127
ACT_FNS = {"relu": nn.ReLU, "swish": swish, "gelu": gelu}

thomwolf's avatar
thomwolf committed
128

129
class OpenAIGPTConfig(PretrainedConfig):
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
    """
    Configuration class to store the configuration of a `OpenAIGPTModel`.

    Args:
        vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `OpenAIGPTModel` or a configuration json file.
        n_special: The number of special tokens to learn during fine-tuning ('[SEP]', '[CLF]', ...)
        n_positions: Number of positional embeddings.
        n_ctx: Size of the causal mask (usually same as n_positions).
        n_embd: Dimensionality of the embeddings and hidden states.
        n_layer: Number of hidden layers in the Transformer encoder.
        n_head: Number of attention heads for each attention layer in
            the Transformer encoder.
        afn: The non-linear activation function (function or string) in the
            encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
        resid_pdrop: The dropout probabilitiy for all fully connected
            layers in the embeddings, encoder, and pooler.
        attn_pdrop: The dropout ratio for the attention
            probabilities.
        embd_pdrop: The dropout ratio for the embeddings.
        layer_norm_epsilon: epsilon to use in the layer norm layers
        initializer_range: The sttdev of the truncated_normal_initializer for
            initializing all weight matrices.
        predict_special_tokens: should we predict special tokens (when the model has a LM head)
thomwolf's avatar
thomwolf committed
153
    """
154
    pretrained_config_archive_map = OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP
155
156
157
158

    def __init__(
        self,
        vocab_size_or_config_json_file=40478,
thomwolf's avatar
thomwolf committed
159
        n_positions=512,
160
161
162
163
164
165
166
167
        n_ctx=512,
        n_embd=768,
        n_layer=12,
        n_head=12,
        afn="gelu",
        resid_pdrop=0.1,
        embd_pdrop=0.1,
        attn_pdrop=0.1,
168
        layer_norm_epsilon=1e-5,
169
        initializer_range=0.02,
thomwolf's avatar
thomwolf committed
170
        predict_special_tokens=True,
thomwolf's avatar
thomwolf committed
171
172

        num_labels=1,
thomwolf's avatar
thomwolf committed
173
174
175
        summary_type='token_ids',
        summary_use_proj=True,
        summary_activation=None,
thomwolf's avatar
thomwolf committed
176
        summary_proj_to_labels=True,
177
        summary_first_dropout=0.1,
thomwolf's avatar
thomwolf committed
178
        **kwargs
179
    ):
thomwolf's avatar
thomwolf committed
180
181
        """Constructs OpenAIGPTConfig.
        """
thomwolf's avatar
thomwolf committed
182
183
        super(OpenAIGPTConfig, self).__init__(**kwargs)

thomwolf's avatar
thomwolf committed
184
185
        if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
                        and isinstance(vocab_size_or_config_json_file, unicode)):
186
            with open(vocab_size_or_config_json_file, "r", encoding="utf-8") as reader:
thomwolf's avatar
thomwolf committed
187
188
189
190
191
192
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
            self.vocab_size = vocab_size_or_config_json_file
            self.n_ctx = n_ctx
thomwolf's avatar
thomwolf committed
193
            self.n_positions = n_positions
thomwolf's avatar
thomwolf committed
194
195
196
197
198
199
200
            self.n_embd = n_embd
            self.n_layer = n_layer
            self.n_head = n_head
            self.afn = afn
            self.resid_pdrop = resid_pdrop
            self.embd_pdrop = embd_pdrop
            self.attn_pdrop = attn_pdrop
201
            self.layer_norm_epsilon = layer_norm_epsilon
thomwolf's avatar
thomwolf committed
202
            self.initializer_range = initializer_range
203
            self.predict_special_tokens = predict_special_tokens
thomwolf's avatar
thomwolf committed
204
205

            self.num_labels = num_labels
thomwolf's avatar
thomwolf committed
206
207
208
            self.summary_type = summary_type
            self.summary_use_proj = summary_use_proj
            self.summary_activation = summary_activation
209
            self.summary_first_dropout = summary_first_dropout
thomwolf's avatar
thomwolf committed
210
            self.summary_proj_to_labels = summary_proj_to_labels
thomwolf's avatar
thomwolf committed
211
        else:
212
213
214
215
            raise ValueError(
                "First argument must be either a vocabulary size (int)"
                "or the path to a pretrained model config file (str)"
            )
thomwolf's avatar
thomwolf committed
216

thomwolf's avatar
thomwolf committed
217
218
219
220
221
222
223
224
225
226
227
228
    @property
    def hidden_size(self):
        return self.n_embd

    @property
    def num_attention_heads(self):
        return self.n_head

    @property
    def num_hidden_layers(self):
        return self.n_layer

thomwolf's avatar
thomwolf committed
229
230

class Attention(nn.Module):
thomwolf's avatar
thomwolf committed
231
    def __init__(self, nx, n_ctx, config, scale=False):
thomwolf's avatar
thomwolf committed
232
233
234
        super(Attention, self).__init__()
        n_state = nx  # in Attention: n_state=768 (nx=n_embd)
        # [switch nx => n_state from Block to Attention to keep identical to TF implem]
235
        assert n_state % config.n_head == 0
thomwolf's avatar
thomwolf committed
236
        self.register_buffer("bias", torch.tril(torch.ones(n_ctx, n_ctx)).view(1, 1, n_ctx, n_ctx))
237
        self.n_head = config.n_head
thomwolf's avatar
thomwolf committed
238
239
        self.split_size = n_state
        self.scale = scale
240

thomwolf's avatar
thomwolf committed
241
        self.output_attentions = config.output_attentions
242

243
244
        self.c_attn = Conv1D(n_state * 3, nx)
        self.c_proj = Conv1D(n_state, nx)
245
246
        self.attn_dropout = nn.Dropout(config.attn_pdrop)
        self.resid_dropout = nn.Dropout(config.resid_pdrop)
thomwolf's avatar
thomwolf committed
247

248
    def prune_heads(self, heads):
thomwolf's avatar
thomwolf committed
249
250
        if len(heads) == 0:
            return
251
252
253
254
255
256
257
258
259
260
261
262
263
264
        mask = torch.ones(self.n_head, self.split_size // self.n_head)
        for head in heads:
            mask[head] = 0
        mask = mask.view(-1).contiguous().eq(1)
        index = torch.arange(len(mask))[mask].long()
        index_attn = torch.cat([index, index + self.split_size, index + (2*self.split_size)])
        # Prune conv1d layers
        self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1)
        self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0)
        # Update hyper params
        self.split_size = (self.split_size // self.n_head) * (self.n_head - len(heads))
        self.n_head = self.n_head - len(heads)

    def _attn(self, q, k, v, head_mask=None):
thomwolf's avatar
thomwolf committed
265
266
267
        w = torch.matmul(q, k)
        if self.scale:
            w = w / math.sqrt(v.size(-1))
thomwolf's avatar
thomwolf committed
268
        # w = w * self.bias + -1e9 * (1 - self.bias)  # TF implem method: mask_attn_weights
thomwolf's avatar
thomwolf committed
269
        # XD: self.b may be larger than w, so we need to crop it
thomwolf's avatar
thomwolf committed
270
        b = self.bias[:, :, : w.size(-2), : w.size(-1)]
thomwolf's avatar
thomwolf committed
271
272
        w = w * b + -1e9 * (1 - b)

thomwolf's avatar
thomwolf committed
273
274
        w = nn.Softmax(dim=-1)(w)
        w = self.attn_dropout(w)
275
276
277
278
279

        # Mask heads if we want to
        if head_mask is not None:
            w = w * head_mask

thomwolf's avatar
thomwolf committed
280
        outputs = [torch.matmul(w, v)]
thomwolf's avatar
thomwolf committed
281
        if self.output_attentions:
thomwolf's avatar
thomwolf committed
282
283
            outputs.append(w)
        return outputs
thomwolf's avatar
thomwolf committed
284
285
286
287
288
289
290
291
292
293
294
295
296
297

    def merge_heads(self, x):
        x = x.permute(0, 2, 1, 3).contiguous()
        new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),)
        return x.view(*new_x_shape)  # in Tensorflow implem: fct merge_states

    def split_heads(self, x, k=False):
        new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head)
        x = x.view(*new_x_shape)  # in Tensorflow implem: fct split_states
        if k:
            return x.permute(0, 2, 3, 1)
        else:
            return x.permute(0, 2, 1, 3)

298
    def forward(self, x, head_mask=None):
thomwolf's avatar
thomwolf committed
299
300
301
302
303
        x = self.c_attn(x)
        query, key, value = x.split(self.split_size, dim=2)
        query = self.split_heads(query)
        key = self.split_heads(key, k=True)
        value = self.split_heads(value)
304

thomwolf's avatar
thomwolf committed
305
306
        attn_outputs = self._attn(query, key, value, head_mask)
        a = attn_outputs[0]
307

thomwolf's avatar
thomwolf committed
308
309
310
        a = self.merge_heads(a)
        a = self.c_proj(a)
        a = self.resid_dropout(a)
thomwolf's avatar
thomwolf committed
311
312
313

        outputs = [a] + attn_outputs[1:]
        return outputs  # a, (attentions)
thomwolf's avatar
thomwolf committed
314
315
316


class MLP(nn.Module):
317
    def __init__(self, n_state, config):  # in MLP: n_state=3072 (4 * n_embd)
thomwolf's avatar
thomwolf committed
318
        super(MLP, self).__init__()
319
        nx = config.n_embd
320
321
        self.c_fc = Conv1D(n_state, nx)
        self.c_proj = Conv1D(nx, n_state)
322
323
        self.act = ACT_FNS[config.afn]
        self.dropout = nn.Dropout(config.resid_pdrop)
thomwolf's avatar
thomwolf committed
324
325
326
327
328
329
330
331

    def forward(self, x):
        h = self.act(self.c_fc(x))
        h2 = self.c_proj(h)
        return self.dropout(h2)


class Block(nn.Module):
thomwolf's avatar
thomwolf committed
332
    def __init__(self, n_ctx, config, scale=False):
thomwolf's avatar
thomwolf committed
333
        super(Block, self).__init__()
334
        nx = config.n_embd
thomwolf's avatar
thomwolf committed
335
        self.attn = Attention(nx, n_ctx, config, scale)
336
        self.ln_1 = LayerNorm(nx, eps=config.layer_norm_epsilon)
337
        self.mlp = MLP(4 * nx, config)
338
        self.ln_2 = LayerNorm(nx, eps=config.layer_norm_epsilon)
thomwolf's avatar
thomwolf committed
339

340
    def forward(self, x, head_mask=None):
thomwolf's avatar
thomwolf committed
341
342
343
        attn_outputs = self.attn(x, head_mask=head_mask)
        a = attn_outputs[0]

thomwolf's avatar
thomwolf committed
344
345
346
        n = self.ln_1(x + a)
        m = self.mlp(n)
        h = self.ln_2(n + m)
thomwolf's avatar
thomwolf committed
347
348
349

        outputs = [h] + attn_outputs[1:]
        return outputs
thomwolf's avatar
thomwolf committed
350
351


352
class OpenAIGPTPreTrainedModel(PreTrainedModel):
thomwolf's avatar
thomwolf committed
353
354
355
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
356
    config_class = OpenAIGPTConfig
357
    pretrained_model_archive_map = OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP
358
359
    load_tf_weights = load_tf_weights_in_openai_gpt
    base_model_prefix = "transformer"
360

361
362
363
    def __init__(self, *inputs, **kwargs):
        super(OpenAIGPTPreTrainedModel, self).__init__(*inputs, **kwargs)

thomwolf's avatar
thomwolf committed
364
365
366
    def init_weights(self, module):
        """ Initialize the weights.
        """
367
        if isinstance(module, (nn.Linear, nn.Embedding, Conv1D)):
thomwolf's avatar
thomwolf committed
368
369
370
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
371
372
            if isinstance(module, (nn.Linear, Conv1D)) and module.bias is not None:
                module.bias.data.zero_()
thomwolf's avatar
thomwolf committed
373
374
375
        elif isinstance(module, LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
thomwolf's avatar
thomwolf committed
376
377


thomwolf's avatar
thomwolf committed
378
class OpenAIGPTModel(OpenAIGPTPreTrainedModel):
379
380
    """OpenAI GPT model ("Improving Language Understanding by Generative Pre-Training").

381
382
383
    OpenAI GPT uses a single embedding matrix to store the word and special embeddings.
    Special tokens embeddings are additional tokens that are not pre-trained, such as: [SEP], [CLS]...

384
    Special tokens need to be trained during the fine-tuning if you use them.
385
386
387
388
389
    The number of special embeddings can be controlled using the ``set_num_special_tokens(num_special_tokens)`` function.

    The embeddings are ordered as follow in the token embeddings matrix:

    ::
390

391
392
393
394
395
        [0,                                                         ----------------------
         ...                                                        -> word embeddings
         config.vocab_size - 1,                                     ______________________
         config.vocab_size,
         ...                                                        -> special embeddings
thomwolf's avatar
thomwolf committed
396
         config.vocab_size + n_special - 1]                  ______________________
397

thomwolf's avatar
thomwolf committed
398
    where ``total_tokens_embeddings``  is:
399
400
401

    ::

thomwolf's avatar
thomwolf committed
402
        total_tokens_embeddings = config.vocab_size + n_special
403

404
405
406
    You should use the associated indices to index the embeddings.

    Args:
407
408
409
410
        `config`: a OpenAIGPTConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False
411
412


413
    Example::
414

415
416
        config = modeling_openai.OpenAIGPTConfig()
        model = modeling_openai.OpenAIGPTModel(config)
417
    """
418

thomwolf's avatar
thomwolf committed
419
    def __init__(self, config):
420
        super(OpenAIGPTModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
421
422
423
        self.output_attentions = config.output_attentions
        self.output_hidden_states = config.output_hidden_states

thomwolf's avatar
thomwolf committed
424
        self.tokens_embed = nn.Embedding(config.vocab_size, config.n_embd)
425
        self.positions_embed = nn.Embedding(config.n_positions, config.n_embd)
426
        self.drop = nn.Dropout(config.embd_pdrop)
427
        self.h = nn.ModuleList([Block(config.n_ctx, config, scale=True) for _ in range(config.n_layer)])
thomwolf's avatar
thomwolf committed
428

thomwolf's avatar
thomwolf committed
429
430
        self.apply(self.init_weights)

thomwolf's avatar
thomwolf committed
431
432
    def _resize_token_embeddings(self, new_num_tokens):
        self.tokens_embed = self._get_resized_embeddings(self.tokens_embed, new_num_tokens)
thomwolf's avatar
thomwolf committed
433

thomwolf's avatar
thomwolf committed
434
    def _prune_heads(self, heads_to_prune):
435
436
437
438
439
440
441
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
        """
        for layer, heads in heads_to_prune.items():
            self.h[layer].attn.prune_heads(heads)

    def forward(self, input_ids, position_ids=None, token_type_ids=None, head_mask=None):
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
        """
        Performs a model forward pass. **Can be called by calling the class directly, once it has been instantiated.**

        Args:
            `input_ids`: a ``torch.LongTensor`` of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length]
                were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, total_tokens_embeddings[
            `position_ids`: an optional ``torch.LongTensor`` with the same shape as input_ids
                with the position indices (selected in the range [0, config.n_positions - 1[.
            `token_type_ids`: an optional ``torch.LongTensor`` with the same shape as input_ids
                You can use it to add a third type of embedding to each input token in the sequence
                (the previous two being the word and position embeddings).
                The input, position and token_type embeddings are summed inside the Transformer before the first
                self-attention block.
            `head_mask`: an optional ``torch.Tensor`` of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
                It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.

        Returns:
            ``hidden_states``, a list of all the encoded-hidden-states in the model (length of the list is number
            of layers + 1 for the output of the embeddings)
            as ``torch.FloatTensor`` of size [batch_size, sequence_length, hidden_size]
            (or more generally [d_1, ..., d_n, hidden_size] were d_1 ... d_n are the dimension of input_ids)

        Example::

            # Already been converted into BPE token ids
            input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])

            hidden_states = model(input_ids)
            # or
            hidden_states = model.forward(input_ids)
        """
thomwolf's avatar
thomwolf committed
473
        if position_ids is None:
474
475
476
477
478
            # This was used when we had a single embedding matrice from position and token embeddings
            # start = self.config.vocab_size + self.config.n_special
            # end = start + input_ids.size(-1)
            # position_ids = torch.arange(start, end, dtype=torch.long, device=input_ids.device)
            position_ids = torch.arange(input_ids.size(-1), dtype=torch.long, device=input_ids.device)
thomwolf's avatar
thomwolf committed
479
480
            position_ids = position_ids.unsqueeze(0).expand_as(input_ids)

481
        # Prepare head mask if needed
thomwolf's avatar
thomwolf committed
482
        # 1.0 in head_mask indicate we keep the head
483
        # attention_probs has shape bsz x n_heads x N x N
484
        # head_mask has shape n_layer x batch x n_heads x N x N
485
486
        if head_mask is not None:
            if head_mask.dim() == 1:
487
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
thomwolf's avatar
thomwolf committed
488
                head_mask = head_mask.expand(self.config.n_layer, -1, -1, -1, -1)
489
            elif head_mask.dim() == 2:
490
                head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
491
            head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
492
493
        else:
            head_mask = [None] * self.config.n_layer
494

thomwolf's avatar
thomwolf committed
495
496
497
498
        input_shape = input_ids.size()
        input_ids = input_ids.view(-1, input_ids.size(-1))
        position_ids = position_ids.view(-1, position_ids.size(-1))

499
500
        inputs_embeds = self.tokens_embed(input_ids)
        position_embeds = self.positions_embed(position_ids)
thomwolf's avatar
thomwolf committed
501
502
        if token_type_ids is not None:
            token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1))
503
            token_type_embeds = self.tokens_embed(token_type_ids)
thomwolf's avatar
thomwolf committed
504
505
506
        else:
            token_type_embeds = 0
        hidden_states = inputs_embeds + position_embeds + token_type_embeds
507
508
        hidden_states = self.drop(hidden_states)

509
510
        output_shape = input_shape + (hidden_states.size(-1),)

511
512
        all_attentions = ()
        all_hidden_states = ()
513
        for i, block in enumerate(self.h):
thomwolf's avatar
thomwolf committed
514
            if self.output_hidden_states:
515
                all_hidden_states = all_hidden_states + (hidden_states.view(*output_shape),)
thomwolf's avatar
thomwolf committed
516

517
            outputs = block(hidden_states, head_mask[i])
thomwolf's avatar
thomwolf committed
518
            hidden_states = outputs[0]
thomwolf's avatar
thomwolf committed
519
            if self.output_attentions:
520
                all_attentions = all_attentions + (outputs[1],)
thomwolf's avatar
thomwolf committed
521
522
523

        # Add last layer
        if self.output_hidden_states:
524
            all_hidden_states = all_hidden_states + (hidden_states.view(*output_shape),)
525

526
        outputs = (hidden_states.view(*output_shape),)
thomwolf's avatar
thomwolf committed
527
        if self.output_hidden_states:
528
            outputs = outputs + (all_hidden_states,)
thomwolf's avatar
thomwolf committed
529
        if self.output_attentions:
530
            outputs = outputs + (all_attentions,)
thomwolf's avatar
thomwolf committed
531
        return outputs  # last hidden state, (all hidden states), (all attentions)
thomwolf's avatar
thomwolf committed
532

533

thomwolf's avatar
thomwolf committed
534
class OpenAIGPTLMHeadModel(OpenAIGPTPreTrainedModel):
535
536
    """OpenAI GPT model with a Language Modeling head ("Improving Language Understanding by Generative Pre-Training").

537
538
    OpenAI GPT use a single embedding matrix to store the word and special embeddings.
    Special tokens embeddings are additional tokens that are not pre-trained: [SEP], [CLS]...
539
540
541
542
543
544
    Special tokens need to be trained during the fine-tuning if you use them. The number of special embeddings
    can be controlled using the ``set_num_special_tokens(num_special_tokens)`` function.

    The embeddings are ordered as follow in the token embeddings matrix:

    ::
545

546
547
548
549
550
        [0,                                                         ----------------------
         ...                                                        -> word embeddings
         config.vocab_size - 1,                                     ______________________
         config.vocab_size,
         ...                                                        -> special embeddings
551
         config.vocab_size + config.n_special - 1]                  ______________________
552

553
554
555
556
    where ``total_tokens_embeddings`` can be obtained as ``config.total_tokens_embeddings`` and is:

    ::

557
        total_tokens_embeddings = config.vocab_size + config.n_special
558

559
560
561
    You should use the associated indices to index the embeddings.

    Args:
562
563
564
565
        `config`: a OpenAIGPTConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False
566
567


568
    Example::
569

570
571
        config = modeling_openai.OpenAIGPTConfig()
        model = modeling_openai.OpenAIGPTLMHeadModel(config)
572
    """
573

thomwolf's avatar
thomwolf committed
574
    def __init__(self, config):
575
        super(OpenAIGPTLMHeadModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
576
        self.transformer = OpenAIGPTModel(config)
thomwolf's avatar
thomwolf committed
577
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
578

thomwolf's avatar
thomwolf committed
579
580
        self.apply(self.init_weights)
        self.tie_weights()
581

thomwolf's avatar
thomwolf committed
582
583
584
    def tie_weights(self):
        """ Make sure we are sharing the input and output embeddings.
            Export to TorchScript can't handle parameter sharing so we are cloning them instead.
585
        """
thomwolf's avatar
thomwolf committed
586
587
588
589
        input_embeddings = self.transformer.tokens_embed.weight
        if self.config.torchscript:
            self.lm_head.weight = nn.Parameter(input_embeddings.clone())
        else:
590
            self.lm_head = self.transformer.tokens_embed  # Tied weights
thomwolf's avatar
thomwolf committed
591

592
    def forward(self, input_ids, position_ids=None, token_type_ids=None, lm_labels=None, head_mask=None):
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
        """
        Performs a model forward pass. **Can be called by calling the class directly, once it has been instantiated.**

        Args:
            `input_ids`: a ``torch.LongTensor`` of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length]
                were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, total_tokens_embeddings[
            `position_ids`: an optional ``torch.LongTensor`` with the same shape as input_ids
                with the position indices (selected in the range [0, config.n_positions - 1[.
            `token_type_ids`: an optional ``torch.LongTensor`` with the same shape as input_ids
                You can use it to add a third type of embedding to each input token in the sequence
                (the previous two being the word and position embeddings).
                The input, position and token_type embeddings are summed inside the Transformer before the first
                self-attention block.
            `lm_labels`: optional language modeling labels: ``torch.LongTensor`` of shape [batch_size, sequence_length]
                with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
                is only computed for the labels set in [0, ..., vocab_size]
            `head_mask`: an optional ``torch.Tensor`` of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
                It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.

        Returns:
            if ``lm_labels`` is not ``None``, outputs the language modeling loss. Otherwise, outputs ``lm_logits``,
            the language modeling logits as a ``torch.FloatTensor`` of size [batch_size, sequence_length,
            total_tokens_embeddings] (or more generally [d_1, ..., d_n, total_tokens_embeddings] where d_1 ... d_n are
            the dimension of input_ids)

        Example::

            # Already been converted into BPE token ids
            input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])

            lm_logits = model(input_ids)
            # or
            lm_logits = model.forward(input_ids)
        """
thomwolf's avatar
thomwolf committed
627
628
        transformer_outputs = self.transformer(input_ids, position_ids, token_type_ids, head_mask)
        hidden_states = transformer_outputs[0]
thomwolf's avatar
thomwolf committed
629
        lm_logits = self.lm_head(hidden_states)
thomwolf's avatar
thomwolf committed
630

631
        outputs = (lm_logits,) + transformer_outputs[1:]
thomwolf's avatar
thomwolf committed
632
        if lm_labels is not None:
633
            # Shift so that tokens < n predict n
thomwolf's avatar
thomwolf committed
634
635
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = lm_labels[..., 1:].contiguous()
Catalin Voss's avatar
Catalin Voss committed
636
            # Flatten the tokens
thomwolf's avatar
thomwolf committed
637
            loss_fct = CrossEntropyLoss(ignore_index=-1)
638
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
639
                            shift_labels.view(-1))
640
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
641
642

        return outputs  # (loss), lm_logits, (all hidden states), (all attentions)
thomwolf's avatar
thomwolf committed
643

644

thomwolf's avatar
thomwolf committed
645
class OpenAIGPTDoubleHeadsModel(OpenAIGPTPreTrainedModel):
thomwolf's avatar
thomwolf committed
646
    """OpenAI GPT model with a Language Modeling and a Multiple Choice head ("Improving Language Understanding by Generative Pre-Training").
647

648
649
650
    OpenAI GPT use a single embedding matrix to store the word and special embeddings.
    Special tokens embeddings are additional tokens that are not pre-trained: [SEP], [CLS]...
    Special tokens need to be trained during the fine-tuning if you use them.
651
652
653
654
655
656
    The number of special embeddings can be controlled using the ``set_num_special_tokens(num_special_tokens)``
    function.

    The embeddings are ordered as follow in the token embeddings matrix:

    ::
657

658
659
660
661
662
        [0,                                                         ----------------------
         ...                                                        -> word embeddings
         config.vocab_size - 1,                                     ______________________
         config.vocab_size,
         ...                                                        -> special embeddings
thomwolf's avatar
thomwolf committed
663
         config.vocab_size + n_special - 1]                  ______________________
664

thomwolf's avatar
thomwolf committed
665
    where ``total_tokens_embeddings`` is:
666
667
668

    ::

thomwolf's avatar
thomwolf committed
669
        total_tokens_embeddings = config.vocab_size + .n_special
670

671
    You should use the associate indices to index the embeddings.
672

673
    Args:
674
675
676
677
        `config`: a OpenAIGPTConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False
678

679
680
681
682
    Example::

        config = modeling_openai.OpenAIGPTConfig()
        model = modeling_openai.OpenAIGPTDoubleHeadsModel(config)
683
    """
684

thomwolf's avatar
thomwolf committed
685
    def __init__(self, config):
686
        super(OpenAIGPTDoubleHeadsModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
687

thomwolf's avatar
thomwolf committed
688
        self.transformer = OpenAIGPTModel(config)
thomwolf's avatar
thomwolf committed
689
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
thomwolf's avatar
thomwolf committed
690
691
        self.multiple_choice_head = SequenceSummary(config)

thomwolf's avatar
thomwolf committed
692
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
693
        self.tie_weights()
thomwolf's avatar
thomwolf committed
694

thomwolf's avatar
thomwolf committed
695
696
697
    def tie_weights(self):
        """ Make sure we are sharing the input and output embeddings.
            Export to TorchScript can't handle parameter sharing so we are cloning them instead.
698
        """
thomwolf's avatar
thomwolf committed
699
700
701
702
        input_embeddings = self.transformer.tokens_embed.weight
        if self.config.torchscript:
            self.lm_head.weight = nn.Parameter(input_embeddings.clone())
        else:
703
            self.lm_head = self.transformer.tokens_embed  # Tied weights
thomwolf's avatar
thomwolf committed
704

thomwolf's avatar
thomwolf committed
705
    def forward(self, input_ids, mc_token_ids=None, lm_labels=None, mc_labels=None, token_type_ids=None,
706
                position_ids=None, head_mask=None):
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
        """
        Performs a model forward pass. **Can be called by calling the class directly, once it has been instantiated.**

        Args:
            `input_ids`: a ``torch.LongTensor`` of shape [batch_size, num_choices, sequence_length] with the BPE token
                indices selected in the range [0, total_tokens_embeddings[
            `mc_token_ids`: a ``torch.LongTensor`` of shape [batch_size, num_choices] with the index of the token from
                which we should take the hidden state to feed the multiple choice classifier (usually last token of the sequence)
            `position_ids`: an optional ``torch.LongTensor`` with the same shape as input_ids
                with the position indices (selected in the range [0, config.n_positions - 1[.
            `token_type_ids`: an optional ``torch.LongTensor`` with the same shape as input_ids
                You can use it to add a third type of embedding to each input token in the sequence
                (the previous two being the word and position embeddings).
                The input, position and token_type embeddings are summed inside the Transformer before the first
                self-attention block.
            `lm_labels`: optional language modeling labels: ``torch.LongTensor`` of shape [batch_size, num_choices, sequence_length]
                with indices selected in [-1, 0, ..., total_tokens_embeddings]. All labels set to -1 are ignored (masked), the loss
                is only computed for the labels set in [0, ..., total_tokens_embeddings]
            `multiple_choice_labels`: optional multiple choice labels: ``torch.LongTensor`` of shape [batch_size]
                with indices selected in [0, ..., num_choices].
            `head_mask`: an optional ``torch.Tensor`` of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
                It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.

        Returns:
            if ``lm_labels`` and ``multiple_choice_labels`` are not ``None``, outputs a tuple of losses with the
            language modeling loss and the multiple choice loss. Otherwise, returns a
            ``tuple(lm_logits, multiple_choice_logits)``.

                ``lm_logits`` are the language modeling logits as a ``torch.FloatTensor`` of size
                [batch_size, num_choices, sequence_length, total_tokens_embeddings]

                ``multiple_choice_logits``: the multiple choice logits as a ``torch.FloatTensor`` of
                size [batch_size, num_choices]

        Example::

            # Already been converted into BPE token ids
            input_ids = torch.LongTensor([[[31, 51, 99], [15, 5, 0]]])  # (bsz, number of choice, seq length)
            mc_token_ids = torch.LongTensor([[2], [1]]) # (bsz, number of choice)

            lm_logits, multiple_choice_logits = model(input_ids, mc_token_ids)
            # or
            lm_logits, multiple_choice_logits = model.forward(input_ids, mc_token_ids)
        """
thomwolf's avatar
thomwolf committed
751
752
        transformer_outputs = self.transformer(input_ids, position_ids, token_type_ids, head_mask)
        hidden_states = transformer_outputs[0]
753

thomwolf's avatar
thomwolf committed
754
        lm_logits = self.lm_head(hidden_states)
thomwolf's avatar
thomwolf committed
755
        mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids).squeeze(-1)
thomwolf's avatar
thomwolf committed
756

757
        outputs = (lm_logits, mc_logits) + transformer_outputs[1:]
thomwolf's avatar
thomwolf committed
758
759
760
761
        if mc_labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(mc_logits.view(-1, mc_logits.size(-1)),
                            mc_labels.view(-1))
762
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
763
        if lm_labels is not None:
thomwolf's avatar
thomwolf committed
764
765
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = lm_labels[..., 1:].contiguous()
thomwolf's avatar
thomwolf committed
766
            loss_fct = CrossEntropyLoss(ignore_index=-1)
thomwolf's avatar
thomwolf committed
767
768
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
                            shift_labels.view(-1))
769
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
770
771

        return outputs  # (lm loss), (mc loss), lm logits, mc logits, (all hidden_states), (attentions)