test_hans.py 27 KB
Newer Older
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Finetuning the library models for sequence classification on GLUE (Bert, XLM, XLNet, RoBERTa)."""

from __future__ import absolute_import, division, print_function

import argparse
import glob
import logging
import os
import random

import numpy as np
import torch
thomwolf's avatar
thomwolf committed
28
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
29
from torch.utils.data.distributed import DistributedSampler
thomwolf's avatar
thomwolf committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
from tqdm import tqdm, trange

from hans_processors import glue_output_modes as output_modes
from hans_processors import glue_processors as processors
from hans_processors import hans_convert_examples_to_features as convert_examples_to_features
from transformers import (
    WEIGHTS_NAME,
    AdamW,
    AlbertConfig,
    AlbertForSequenceClassification,
    AlbertTokenizer,
    BertConfig,
    BertForSequenceClassification,
    BertTokenizer,
    DistilBertConfig,
    DistilBertForSequenceClassification,
    DistilBertTokenizer,
    RobertaConfig,
    RobertaForSequenceClassification,
    RobertaTokenizer,
    XLMConfig,
    XLMForSequenceClassification,
    XLMTokenizer,
    XLNetConfig,
    XLNetForSequenceClassification,
    XLNetTokenizer,
    get_linear_schedule_with_warmup,
)

Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
59
60
61

try:
    from torch.utils.tensorboard import SummaryWriter
62
except ImportError:
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
63
64
65
66
67
    from tensorboardX import SummaryWriter


logger = logging.getLogger(__name__)

thomwolf's avatar
thomwolf committed
68
69
70
71
72
73
74
ALL_MODELS = sum(
    (
        tuple(conf.pretrained_config_archive_map.keys())
        for conf in (BertConfig, XLNetConfig, XLMConfig, RobertaConfig, DistilBertConfig)
    ),
    (),
)
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
75
76

MODEL_CLASSES = {
thomwolf's avatar
thomwolf committed
77
78
79
80
81
82
    "bert": (BertConfig, BertForSequenceClassification, BertTokenizer),
    "xlnet": (XLNetConfig, XLNetForSequenceClassification, XLNetTokenizer),
    "xlm": (XLMConfig, XLMForSequenceClassification, XLMTokenizer),
    "roberta": (RobertaConfig, RobertaForSequenceClassification, RobertaTokenizer),
    "distilbert": (DistilBertConfig, DistilBertForSequenceClassification, DistilBertTokenizer),
    "albert": (AlbertConfig, AlbertForSequenceClassification, AlbertTokenizer),
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
}


def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)


def train(args, train_dataset, model, tokenizer):
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
    train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
    train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)

    if args.max_steps > 0:
        t_total = args.max_steps
        args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
        t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs

    # Prepare optimizer and schedule (linear warmup and decay)
thomwolf's avatar
thomwolf committed
110
    no_decay = ["bias", "LayerNorm.weight"]
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
111
    optimizer_grouped_parameters = [
thomwolf's avatar
thomwolf committed
112
113
114
115
116
117
        {
            "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
            "weight_decay": args.weight_decay,
        },
        {"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
    ]
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
118
119

    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
thomwolf's avatar
thomwolf committed
120
121
122
    scheduler = get_linear_schedule_with_warmup(
        optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
    )
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
123
124
125
126
127
128
129
130
131
132
133
134
135
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)

    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
thomwolf's avatar
thomwolf committed
136
137
138
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True
        )
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
139
140
141
142
143
144

    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
    logger.info("  Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
thomwolf's avatar
thomwolf committed
145
146
147
148
149
150
    logger.info(
        "  Total train batch size (w. parallel, distributed & accumulation) = %d",
        args.train_batch_size
        * args.gradient_accumulation_steps
        * (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
    )
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
151
152
153
154
155
156
157
158
159
160
161
162
163
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
    logger.info("  Total optimization steps = %d", t_total)

    global_step = 0
    tr_loss, logging_loss = 0.0, 0.0
    model.zero_grad()
    train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
    set_seed(args)  # Added here for reproductibility (even between python 2 and 3)
    for _ in train_iterator:
        epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
        for step, batch in enumerate(epoch_iterator):
            model.train()
            batch = tuple(t.to(args.device) for t in batch)
thomwolf's avatar
thomwolf committed
164
165
166
167
168
            inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
            if args.model_type != "distilbert":
                inputs["token_type_ids"] = (
                    batch[2] if args.model_type in ["bert", "xlnet"] else None
                )  # XLM, DistilBERT and RoBERTa don't use segment_ids
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
169
170
171
172
            outputs = model(**inputs)
            loss = outputs[0]  # model outputs are always tuple in transformers (see doc)

            if args.n_gpu > 1:
thomwolf's avatar
thomwolf committed
173
                loss = loss.mean()  # mean() to average on multi-gpu parallel training
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps

            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()

            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
                if args.fp16:
                    torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
                else:
                    torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)

                optimizer.step()
                scheduler.step()  # Update learning rate schedule
                model.zero_grad()
                global_step += 1

                if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
                    logs = {}
thomwolf's avatar
thomwolf committed
197
198
199
                    if (
                        args.local_rank == -1 and args.evaluate_during_training
                    ):  # Only evaluate when single GPU otherwise metrics may not average well
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
200
201
                        results = evaluate(args, model, tokenizer)
                        for key, value in results.items():
thomwolf's avatar
thomwolf committed
202
                            eval_key = "eval_{}".format(key)
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
203
204
205
206
                            logs[eval_key] = value

                    loss_scalar = (tr_loss - logging_loss) / args.logging_steps
                    learning_rate_scalar = scheduler.get_lr()[0]
thomwolf's avatar
thomwolf committed
207
208
                    logs["learning_rate"] = learning_rate_scalar
                    logs["loss"] = loss_scalar
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
209
210
211
212
                    logging_loss = tr_loss

                    for key, value in logs.items():
                        tb_writer.add_scalar(key, value, global_step)
thomwolf's avatar
thomwolf committed
213
                    # print(json.dumps({**logs, **{'step': global_step}}))
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
214
215
216

                if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
                    # Save model checkpoint
thomwolf's avatar
thomwolf committed
217
                    output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step))
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
218
219
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)
thomwolf's avatar
thomwolf committed
220
221
222
                    model_to_save = (
                        model.module if hasattr(model, "module") else model
                    )  # Take care of distributed/parallel training
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
223
                    model_to_save.save_pretrained(output_dir)
thomwolf's avatar
thomwolf committed
224
                    torch.save(args, os.path.join(output_dir, "training_args.bin"))
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
                    logger.info("Saving model checkpoint to %s", output_dir)

            if args.max_steps > 0 and global_step > args.max_steps:
                epoch_iterator.close()
                break
        if args.max_steps > 0 and global_step > args.max_steps:
            train_iterator.close()
            break

    if args.local_rank in [-1, 0]:
        tb_writer.close()

    return global_step, tr_loss / global_step


def evaluate(args, model, tokenizer, prefix=""):
    # Loop to handle MNLI double evaluation (matched, mis-matched)
    eval_task_names = ("mnli", "mnli-mm") if args.task_name == "mnli" else (args.task_name,)
thomwolf's avatar
thomwolf committed
243
    eval_outputs_dirs = (args.output_dir, args.output_dir + "-MM") if args.task_name == "mnli" else (args.output_dir,)
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273

    results = {}
    for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs):
        eval_dataset, label_list = load_and_cache_examples(args, eval_task, tokenizer, evaluate=True)

        if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(eval_output_dir)

        args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
        # Note that DistributedSampler samples randomly
        eval_sampler = SequentialSampler(eval_dataset)
        eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)

        # multi-gpu eval
        if args.n_gpu > 1:
            model = torch.nn.DataParallel(model)

        # Eval!
        logger.info("***** Running evaluation {} *****".format(prefix))
        logger.info("  Num examples = %d", len(eval_dataset))
        logger.info("  Batch size = %d", args.eval_batch_size)
        eval_loss = 0.0
        nb_eval_steps = 0
        preds = None
        out_label_ids = None
        for batch in tqdm(eval_dataloader, desc="Evaluating"):
            model.eval()
            batch = tuple(t.to(args.device) for t in batch)

            with torch.no_grad():
thomwolf's avatar
thomwolf committed
274
275
276
277
278
                inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
                if args.model_type != "distilbert":
                    inputs["token_type_ids"] = (
                        batch[2] if args.model_type in ["bert", "xlnet"] else None
                    )  # XLM, DistilBERT and RoBERTa don't use segment_ids
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
279
280
281
282
283
284
285
                outputs = model(**inputs)
                tmp_eval_loss, logits = outputs[:2]

                eval_loss += tmp_eval_loss.mean().item()
            nb_eval_steps += 1
            if preds is None:
                preds = logits.detach().cpu().numpy()
thomwolf's avatar
thomwolf committed
286
                out_label_ids = inputs["labels"].detach().cpu().numpy()
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
287
288
289
                pair_ids = batch[4].detach().cpu().numpy()
            else:
                preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
thomwolf's avatar
thomwolf committed
290
                out_label_ids = np.append(out_label_ids, inputs["labels"].detach().cpu().numpy(), axis=0)
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
291
292
293
294
295
296
297
298
299
300
301
302
                pair_ids = np.append(pair_ids, batch[4].detach().cpu().numpy(), axis=0)

        eval_loss = eval_loss / nb_eval_steps
        if args.output_mode == "classification":
            preds = np.argmax(preds, axis=1)
        elif args.output_mode == "regression":
            preds = np.squeeze(preds)

        output_eval_file = os.path.join(eval_output_dir, "hans_predictions.txt")
        with open(output_eval_file, "w") as writer:
            writer.write("pairID,gld_label\n")
            for pid, pred in zip(pair_ids, preds):
thomwolf's avatar
thomwolf committed
303
                writer.write("ex" + str(pid) + "," + label_list[int(pred)] + "\n")
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
304
305
306
307
308
309
310
311
312
313
314

    return results


def load_and_cache_examples(args, task, tokenizer, evaluate=False):
    if args.local_rank not in [-1, 0] and not evaluate:
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

    processor = processors[task]()
    output_mode = output_modes[task]
    # Load data features from cache or dataset file
thomwolf's avatar
thomwolf committed
315
316
317
318
319
320
321
322
323
    cached_features_file = os.path.join(
        args.data_dir,
        "cached_{}_{}_{}_{}".format(
            "dev" if evaluate else "train",
            list(filter(None, args.model_name_or_path.split("/"))).pop(),
            str(args.max_seq_length),
            str(task),
        ),
    )
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
324
325
326
327
328
329
330
331

    label_list = processor.get_labels()

    if os.path.exists(cached_features_file) and not args.overwrite_cache:
        logger.info("Loading features from cached file %s", cached_features_file)
        features = torch.load(cached_features_file)
    else:
        logger.info("Creating features from dataset file at %s", args.data_dir)
thomwolf's avatar
thomwolf committed
332
        if task in ["mnli", "mnli-mm"] and args.model_type in ["roberta"]:
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
333
            # HACK(label indices are swapped in RoBERTa pretrained model)
thomwolf's avatar
thomwolf committed
334
335
336
337
338
339
340
341
342
343
344
345
346
            label_list[1], label_list[2] = label_list[2], label_list[1]
        examples = (
            processor.get_dev_examples(args.data_dir) if evaluate else processor.get_train_examples(args.data_dir)
        )
        features = convert_examples_to_features(
            examples,
            tokenizer,
            label_list=label_list,
            max_length=args.max_seq_length,
            output_mode=output_mode,
            pad_on_left=bool(args.model_type in ["xlnet"]),  # pad on the left for xlnet
            pad_token=tokenizer.convert_tokens_to_ids([tokenizer.pad_token])[0],
            pad_token_segment_id=4 if args.model_type in ["xlnet"] else 0,
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
        )
        if args.local_rank in [-1, 0]:
            logger.info("Saving features into cached file %s", cached_features_file)
            torch.save(features, cached_features_file)

    if args.local_rank == 0 and not evaluate:
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

    # Convert to Tensors and build dataset
    all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
    all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long)
    all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long)
    if output_mode == "classification":
        all_labels = torch.tensor([f.label for f in features], dtype=torch.long)
    elif output_mode == "regression":
        all_labels = torch.tensor([f.label for f in features], dtype=torch.float)
    all_pair_ids = torch.tensor([int(f.pairID) for f in features], dtype=torch.long)

    dataset = TensorDataset(all_input_ids, all_attention_mask, all_token_type_ids, all_labels, all_pair_ids)
    return dataset, label_list


def main():
    parser = argparse.ArgumentParser()

372
    # Required parameters
thomwolf's avatar
thomwolf committed
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        required=True,
        help="The input data dir. Should contain the .tsv files (or other data files) for the task.",
    )
    parser.add_argument(
        "--model_type",
        default=None,
        type=str,
        required=True,
        help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()),
    )
    parser.add_argument(
        "--model_name_or_path",
        default=None,
        type=str,
        required=True,
        help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS),
    )
    parser.add_argument(
        "--task_name",
        default=None,
        type=str,
        required=True,
        help="The name of the task to train selected in the list: " + ", ".join(processors.keys()),
    )
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help="The output directory where the model predictions and checkpoints will be written.",
    )
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
408

409
    # Other parameters
thomwolf's avatar
thomwolf committed
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
    parser.add_argument(
        "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name"
    )
    parser.add_argument(
        "--tokenizer_name",
        default="",
        type=str,
        help="Pretrained tokenizer name or path if not the same as model_name",
    )
    parser.add_argument(
        "--cache_dir",
        default="",
        type=str,
        help="Where do you want to store the pre-trained models downloaded from s3",
    )
    parser.add_argument(
        "--max_seq_length",
        default=128,
        type=int,
        help="The maximum total input sequence length after tokenization. Sequences longer "
        "than this will be truncated, sequences shorter will be padded.",
    )
    parser.add_argument("--do_train", action="store_true", help="Whether to run training.")
    parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.")
    parser.add_argument(
        "--evaluate_during_training", action="store_true", help="Rul evaluation during training at each logging step."
    )
    parser.add_argument(
        "--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model."
    )

    parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.")
    parser.add_argument(
        "--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation."
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
    parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
    parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument(
        "--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform."
    )
    parser.add_argument(
        "--max_steps",
        default=-1,
        type=int,
        help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
    )
    parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")

    parser.add_argument("--logging_steps", type=int, default=50, help="Log every X updates steps.")
    parser.add_argument("--save_steps", type=int, default=50, help="Save checkpoint every X updates steps.")
    parser.add_argument(
        "--eval_all_checkpoints",
        action="store_true",
        help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number",
    )
    parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available")
    parser.add_argument(
        "--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory"
    )
    parser.add_argument(
        "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets"
    )
    parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")

    parser.add_argument(
        "--fp16",
        action="store_true",
        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
    )
    parser.add_argument(
        "--fp16_opt_level",
        type=str,
        default="O1",
        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
        "See details at https://nvidia.github.io/apex/amp.html",
    )
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
    parser.add_argument("--server_ip", type=str, default="", help="For distant debugging.")
    parser.add_argument("--server_port", type=str, default="", help="For distant debugging.")
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
497
498
    args = parser.parse_args()

thomwolf's avatar
thomwolf committed
499
500
501
502
503
504
505
506
507
508
509
    if (
        os.path.exists(args.output_dir)
        and os.listdir(args.output_dir)
        and args.do_train
        and not args.overwrite_output_dir
    ):
        raise ValueError(
            "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
                args.output_dir
            )
        )
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
510
511
512
513
514

    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
thomwolf's avatar
thomwolf committed
515

Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
516
517
518
519
520
521
522
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
523
        args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count()
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
524
525
526
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
thomwolf's avatar
thomwolf committed
527
        torch.distributed.init_process_group(backend="nccl")
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
528
529
530
531
        args.n_gpu = 1
    args.device = device

    # Setup logging
thomwolf's avatar
thomwolf committed
532
533
534
535
536
537
538
539
540
541
542
543
544
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,
    )
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        args.local_rank,
        device,
        args.n_gpu,
        bool(args.local_rank != -1),
        args.fp16,
    )
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

    # Set seed
    set_seed(args)

    # Prepare GLUE task
    args.task_name = args.task_name.lower()
    if args.task_name not in processors:
        raise ValueError("Task not found: %s" % (args.task_name))
    processor = processors[args.task_name]()
    args.output_mode = output_modes[args.task_name]
    label_list = processor.get_labels()
    num_labels = len(label_list)

    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab

    args.model_type = args.model_type.lower()
    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
thomwolf's avatar
thomwolf committed
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
    config = config_class.from_pretrained(
        args.config_name if args.config_name else args.model_name_or_path,
        num_labels=num_labels,
        finetuning_task=args.task_name,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
    tokenizer = tokenizer_class.from_pretrained(
        args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
        do_lower_case=args.do_lower_case,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
    model = model_class.from_pretrained(
        args.model_name_or_path,
        from_tf=bool(".ckpt" in args.model_name_or_path),
        config=config,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603

    if args.local_rank == 0:
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab

    model.to(args.device)

    logger.info("Training/evaluation parameters %s", args)

    # Training
    if args.do_train:
        train_dataset, _ = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=False)
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)

    # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

        logger.info("Saving model checkpoint to %s", args.output_dir)
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
thomwolf's avatar
thomwolf committed
604
605
606
        model_to_save = (
            model.module if hasattr(model, "module") else model
        )  # Take care of distributed/parallel training
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
607
608
609
610
        model_to_save.save_pretrained(args.output_dir)
        tokenizer.save_pretrained(args.output_dir)

        # Good practice: save your training arguments together with the trained model
thomwolf's avatar
thomwolf committed
611
        torch.save(args, os.path.join(args.output_dir, "training_args.bin"))
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
612
613
614
615
616
617
618
619
620
621
622
623

        # Load a trained model and vocabulary that you have fine-tuned
        model = model_class.from_pretrained(args.output_dir)
        tokenizer = tokenizer_class.from_pretrained(args.output_dir)
        model.to(args.device)

    # Evaluation
    results = {}
    if args.do_eval and args.local_rank in [-1, 0]:
        tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
        checkpoints = [args.output_dir]
        if args.eval_all_checkpoints:
thomwolf's avatar
thomwolf committed
624
625
626
            checkpoints = list(
                os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True))
            )
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
627
628
629
            logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN)  # Reduce logging
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
        for checkpoint in checkpoints:
thomwolf's avatar
thomwolf committed
630
631
632
            global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else ""
            prefix = checkpoint.split("/")[-1] if checkpoint.find("checkpoint") != -1 else ""

Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
633
634
635
            model = model_class.from_pretrained(checkpoint)
            model.to(args.device)
            result = evaluate(args, model, tokenizer, prefix=prefix)
thomwolf's avatar
thomwolf committed
636
            result = dict((k + "_{}".format(global_step), v) for k, v in result.items())
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
637
638
639
640
641
642
643
            results.update(result)

    return results


if __name__ == "__main__":
    main()