test_hans.py 27.1 KB
Newer Older
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Finetuning the library models for sequence classification on GLUE (Bert, XLM, XLNet, RoBERTa)."""

from __future__ import absolute_import, division, print_function

import argparse
import glob
thomwolf's avatar
thomwolf committed
22
import json
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
23
24
25
26
27
28
import logging
import os
import random

import numpy as np
import torch
thomwolf's avatar
thomwolf committed
29
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
30
from torch.utils.data.distributed import DistributedSampler
thomwolf's avatar
thomwolf committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
from tqdm import tqdm, trange

from hans_processors import glue_output_modes as output_modes
from hans_processors import glue_processors as processors
from hans_processors import hans_convert_examples_to_features as convert_examples_to_features
from transformers import (
    WEIGHTS_NAME,
    AdamW,
    AlbertConfig,
    AlbertForSequenceClassification,
    AlbertTokenizer,
    BertConfig,
    BertForSequenceClassification,
    BertTokenizer,
    DistilBertConfig,
    DistilBertForSequenceClassification,
    DistilBertTokenizer,
    RobertaConfig,
    RobertaForSequenceClassification,
    RobertaTokenizer,
    XLMConfig,
    XLMForSequenceClassification,
    XLMTokenizer,
    XLNetConfig,
    XLNetForSequenceClassification,
    XLNetTokenizer,
    get_linear_schedule_with_warmup,
)
from transformers import glue_compute_metrics as compute_metrics

Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
61
62
63
64
65
66
67
68

try:
    from torch.utils.tensorboard import SummaryWriter
except:
    from tensorboardX import SummaryWriter



thomwolf's avatar
thomwolf committed
69

Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
70
71
72

logger = logging.getLogger(__name__)

thomwolf's avatar
thomwolf committed
73
74
75
76
77
78
79
ALL_MODELS = sum(
    (
        tuple(conf.pretrained_config_archive_map.keys())
        for conf in (BertConfig, XLNetConfig, XLMConfig, RobertaConfig, DistilBertConfig)
    ),
    (),
)
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
80
81

MODEL_CLASSES = {
thomwolf's avatar
thomwolf committed
82
83
84
85
86
87
    "bert": (BertConfig, BertForSequenceClassification, BertTokenizer),
    "xlnet": (XLNetConfig, XLNetForSequenceClassification, XLNetTokenizer),
    "xlm": (XLMConfig, XLMForSequenceClassification, XLMTokenizer),
    "roberta": (RobertaConfig, RobertaForSequenceClassification, RobertaTokenizer),
    "distilbert": (DistilBertConfig, DistilBertForSequenceClassification, DistilBertTokenizer),
    "albert": (AlbertConfig, AlbertForSequenceClassification, AlbertTokenizer),
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
}


def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)


def train(args, train_dataset, model, tokenizer):
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
    train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
    train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)

    if args.max_steps > 0:
        t_total = args.max_steps
        args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
        t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs

    # Prepare optimizer and schedule (linear warmup and decay)
thomwolf's avatar
thomwolf committed
115
    no_decay = ["bias", "LayerNorm.weight"]
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
116
    optimizer_grouped_parameters = [
thomwolf's avatar
thomwolf committed
117
118
119
120
121
122
        {
            "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
            "weight_decay": args.weight_decay,
        },
        {"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
    ]
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
123
124

    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
thomwolf's avatar
thomwolf committed
125
126
127
    scheduler = get_linear_schedule_with_warmup(
        optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
    )
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
128
129
130
131
132
133
134
135
136
137
138
139
140
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)

    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
thomwolf's avatar
thomwolf committed
141
142
143
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True
        )
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
144
145
146
147
148
149

    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
    logger.info("  Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
thomwolf's avatar
thomwolf committed
150
151
152
153
154
155
    logger.info(
        "  Total train batch size (w. parallel, distributed & accumulation) = %d",
        args.train_batch_size
        * args.gradient_accumulation_steps
        * (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
    )
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
156
157
158
159
160
161
162
163
164
165
166
167
168
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
    logger.info("  Total optimization steps = %d", t_total)

    global_step = 0
    tr_loss, logging_loss = 0.0, 0.0
    model.zero_grad()
    train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
    set_seed(args)  # Added here for reproductibility (even between python 2 and 3)
    for _ in train_iterator:
        epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
        for step, batch in enumerate(epoch_iterator):
            model.train()
            batch = tuple(t.to(args.device) for t in batch)
thomwolf's avatar
thomwolf committed
169
170
171
172
173
            inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
            if args.model_type != "distilbert":
                inputs["token_type_ids"] = (
                    batch[2] if args.model_type in ["bert", "xlnet"] else None
                )  # XLM, DistilBERT and RoBERTa don't use segment_ids
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
174
175
176
177
            outputs = model(**inputs)
            loss = outputs[0]  # model outputs are always tuple in transformers (see doc)

            if args.n_gpu > 1:
thomwolf's avatar
thomwolf committed
178
                loss = loss.mean()  # mean() to average on multi-gpu parallel training
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps

            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()

            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
                if args.fp16:
                    torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
                else:
                    torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)

                optimizer.step()
                scheduler.step()  # Update learning rate schedule
                model.zero_grad()
                global_step += 1

                if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
                    logs = {}
thomwolf's avatar
thomwolf committed
202
203
204
                    if (
                        args.local_rank == -1 and args.evaluate_during_training
                    ):  # Only evaluate when single GPU otherwise metrics may not average well
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
205
206
                        results = evaluate(args, model, tokenizer)
                        for key, value in results.items():
thomwolf's avatar
thomwolf committed
207
                            eval_key = "eval_{}".format(key)
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
208
209
210
211
                            logs[eval_key] = value

                    loss_scalar = (tr_loss - logging_loss) / args.logging_steps
                    learning_rate_scalar = scheduler.get_lr()[0]
thomwolf's avatar
thomwolf committed
212
213
                    logs["learning_rate"] = learning_rate_scalar
                    logs["loss"] = loss_scalar
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
214
215
216
217
                    logging_loss = tr_loss

                    for key, value in logs.items():
                        tb_writer.add_scalar(key, value, global_step)
thomwolf's avatar
thomwolf committed
218
                    # print(json.dumps({**logs, **{'step': global_step}}))
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
219
220
221

                if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
                    # Save model checkpoint
thomwolf's avatar
thomwolf committed
222
                    output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step))
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
223
224
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)
thomwolf's avatar
thomwolf committed
225
226
227
                    model_to_save = (
                        model.module if hasattr(model, "module") else model
                    )  # Take care of distributed/parallel training
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
228
                    model_to_save.save_pretrained(output_dir)
thomwolf's avatar
thomwolf committed
229
                    torch.save(args, os.path.join(output_dir, "training_args.bin"))
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
                    logger.info("Saving model checkpoint to %s", output_dir)

            if args.max_steps > 0 and global_step > args.max_steps:
                epoch_iterator.close()
                break
        if args.max_steps > 0 and global_step > args.max_steps:
            train_iterator.close()
            break

    if args.local_rank in [-1, 0]:
        tb_writer.close()

    return global_step, tr_loss / global_step


def evaluate(args, model, tokenizer, prefix=""):
    # Loop to handle MNLI double evaluation (matched, mis-matched)
    eval_task_names = ("mnli", "mnli-mm") if args.task_name == "mnli" else (args.task_name,)
thomwolf's avatar
thomwolf committed
248
    eval_outputs_dirs = (args.output_dir, args.output_dir + "-MM") if args.task_name == "mnli" else (args.output_dir,)
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278

    results = {}
    for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs):
        eval_dataset, label_list = load_and_cache_examples(args, eval_task, tokenizer, evaluate=True)

        if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(eval_output_dir)

        args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
        # Note that DistributedSampler samples randomly
        eval_sampler = SequentialSampler(eval_dataset)
        eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)

        # multi-gpu eval
        if args.n_gpu > 1:
            model = torch.nn.DataParallel(model)

        # Eval!
        logger.info("***** Running evaluation {} *****".format(prefix))
        logger.info("  Num examples = %d", len(eval_dataset))
        logger.info("  Batch size = %d", args.eval_batch_size)
        eval_loss = 0.0
        nb_eval_steps = 0
        preds = None
        out_label_ids = None
        for batch in tqdm(eval_dataloader, desc="Evaluating"):
            model.eval()
            batch = tuple(t.to(args.device) for t in batch)

            with torch.no_grad():
thomwolf's avatar
thomwolf committed
279
280
281
282
283
                inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
                if args.model_type != "distilbert":
                    inputs["token_type_ids"] = (
                        batch[2] if args.model_type in ["bert", "xlnet"] else None
                    )  # XLM, DistilBERT and RoBERTa don't use segment_ids
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
284
285
286
287
288
289
290
                outputs = model(**inputs)
                tmp_eval_loss, logits = outputs[:2]

                eval_loss += tmp_eval_loss.mean().item()
            nb_eval_steps += 1
            if preds is None:
                preds = logits.detach().cpu().numpy()
thomwolf's avatar
thomwolf committed
291
                out_label_ids = inputs["labels"].detach().cpu().numpy()
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
292
293
294
                pair_ids = batch[4].detach().cpu().numpy()
            else:
                preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
thomwolf's avatar
thomwolf committed
295
                out_label_ids = np.append(out_label_ids, inputs["labels"].detach().cpu().numpy(), axis=0)
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
296
297
298
299
300
301
302
303
304
305
306
307
                pair_ids = np.append(pair_ids, batch[4].detach().cpu().numpy(), axis=0)

        eval_loss = eval_loss / nb_eval_steps
        if args.output_mode == "classification":
            preds = np.argmax(preds, axis=1)
        elif args.output_mode == "regression":
            preds = np.squeeze(preds)

        output_eval_file = os.path.join(eval_output_dir, "hans_predictions.txt")
        with open(output_eval_file, "w") as writer:
            writer.write("pairID,gld_label\n")
            for pid, pred in zip(pair_ids, preds):
thomwolf's avatar
thomwolf committed
308
                writer.write("ex" + str(pid) + "," + label_list[int(pred)] + "\n")
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
309
310
311
312
313
314
315
316
317
318
319

    return results


def load_and_cache_examples(args, task, tokenizer, evaluate=False):
    if args.local_rank not in [-1, 0] and not evaluate:
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

    processor = processors[task]()
    output_mode = output_modes[task]
    # Load data features from cache or dataset file
thomwolf's avatar
thomwolf committed
320
321
322
323
324
325
326
327
328
    cached_features_file = os.path.join(
        args.data_dir,
        "cached_{}_{}_{}_{}".format(
            "dev" if evaluate else "train",
            list(filter(None, args.model_name_or_path.split("/"))).pop(),
            str(args.max_seq_length),
            str(task),
        ),
    )
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
329
330
331
332
333
334
335
336

    label_list = processor.get_labels()

    if os.path.exists(cached_features_file) and not args.overwrite_cache:
        logger.info("Loading features from cached file %s", cached_features_file)
        features = torch.load(cached_features_file)
    else:
        logger.info("Creating features from dataset file at %s", args.data_dir)
thomwolf's avatar
thomwolf committed
337
        if task in ["mnli", "mnli-mm"] and args.model_type in ["roberta"]:
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
338
            # HACK(label indices are swapped in RoBERTa pretrained model)
thomwolf's avatar
thomwolf committed
339
340
341
342
343
344
345
346
347
348
349
350
351
            label_list[1], label_list[2] = label_list[2], label_list[1]
        examples = (
            processor.get_dev_examples(args.data_dir) if evaluate else processor.get_train_examples(args.data_dir)
        )
        features = convert_examples_to_features(
            examples,
            tokenizer,
            label_list=label_list,
            max_length=args.max_seq_length,
            output_mode=output_mode,
            pad_on_left=bool(args.model_type in ["xlnet"]),  # pad on the left for xlnet
            pad_token=tokenizer.convert_tokens_to_ids([tokenizer.pad_token])[0],
            pad_token_segment_id=4 if args.model_type in ["xlnet"] else 0,
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
        )
        if args.local_rank in [-1, 0]:
            logger.info("Saving features into cached file %s", cached_features_file)
            torch.save(features, cached_features_file)

    if args.local_rank == 0 and not evaluate:
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

    # Convert to Tensors and build dataset
    all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
    all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long)
    all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long)
    if output_mode == "classification":
        all_labels = torch.tensor([f.label for f in features], dtype=torch.long)
    elif output_mode == "regression":
        all_labels = torch.tensor([f.label for f in features], dtype=torch.float)
    all_pair_ids = torch.tensor([int(f.pairID) for f in features], dtype=torch.long)

    dataset = TensorDataset(all_input_ids, all_attention_mask, all_token_type_ids, all_labels, all_pair_ids)
    return dataset, label_list


def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
thomwolf's avatar
thomwolf committed
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        required=True,
        help="The input data dir. Should contain the .tsv files (or other data files) for the task.",
    )
    parser.add_argument(
        "--model_type",
        default=None,
        type=str,
        required=True,
        help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()),
    )
    parser.add_argument(
        "--model_name_or_path",
        default=None,
        type=str,
        required=True,
        help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS),
    )
    parser.add_argument(
        "--task_name",
        default=None,
        type=str,
        required=True,
        help="The name of the task to train selected in the list: " + ", ".join(processors.keys()),
    )
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help="The output directory where the model predictions and checkpoints will be written.",
    )
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
413
414

    ## Other parameters
thomwolf's avatar
thomwolf committed
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
    parser.add_argument(
        "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name"
    )
    parser.add_argument(
        "--tokenizer_name",
        default="",
        type=str,
        help="Pretrained tokenizer name or path if not the same as model_name",
    )
    parser.add_argument(
        "--cache_dir",
        default="",
        type=str,
        help="Where do you want to store the pre-trained models downloaded from s3",
    )
    parser.add_argument(
        "--max_seq_length",
        default=128,
        type=int,
        help="The maximum total input sequence length after tokenization. Sequences longer "
        "than this will be truncated, sequences shorter will be padded.",
    )
    parser.add_argument("--do_train", action="store_true", help="Whether to run training.")
    parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.")
    parser.add_argument(
        "--evaluate_during_training", action="store_true", help="Rul evaluation during training at each logging step."
    )
    parser.add_argument(
        "--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model."
    )

    parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.")
    parser.add_argument(
        "--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation."
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
    parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
    parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument(
        "--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform."
    )
    parser.add_argument(
        "--max_steps",
        default=-1,
        type=int,
        help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
    )
    parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")

    parser.add_argument("--logging_steps", type=int, default=50, help="Log every X updates steps.")
    parser.add_argument("--save_steps", type=int, default=50, help="Save checkpoint every X updates steps.")
    parser.add_argument(
        "--eval_all_checkpoints",
        action="store_true",
        help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number",
    )
    parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available")
    parser.add_argument(
        "--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory"
    )
    parser.add_argument(
        "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets"
    )
    parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")

    parser.add_argument(
        "--fp16",
        action="store_true",
        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
    )
    parser.add_argument(
        "--fp16_opt_level",
        type=str,
        default="O1",
        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
        "See details at https://nvidia.github.io/apex/amp.html",
    )
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
    parser.add_argument("--server_ip", type=str, default="", help="For distant debugging.")
    parser.add_argument("--server_port", type=str, default="", help="For distant debugging.")
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
502
503
    args = parser.parse_args()

thomwolf's avatar
thomwolf committed
504
505
506
507
508
509
510
511
512
513
514
    if (
        os.path.exists(args.output_dir)
        and os.listdir(args.output_dir)
        and args.do_train
        and not args.overwrite_output_dir
    ):
        raise ValueError(
            "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
                args.output_dir
            )
        )
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
515
516
517
518
519

    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
thomwolf's avatar
thomwolf committed
520

Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
521
522
523
524
525
526
527
528
529
530
531
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        args.n_gpu = torch.cuda.device_count()
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
thomwolf's avatar
thomwolf committed
532
        torch.distributed.init_process_group(backend="nccl")
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
533
534
535
536
        args.n_gpu = 1
    args.device = device

    # Setup logging
thomwolf's avatar
thomwolf committed
537
538
539
540
541
542
543
544
545
546
547
548
549
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,
    )
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        args.local_rank,
        device,
        args.n_gpu,
        bool(args.local_rank != -1),
        args.fp16,
    )
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568

    # Set seed
    set_seed(args)

    # Prepare GLUE task
    args.task_name = args.task_name.lower()
    if args.task_name not in processors:
        raise ValueError("Task not found: %s" % (args.task_name))
    processor = processors[args.task_name]()
    args.output_mode = output_modes[args.task_name]
    label_list = processor.get_labels()
    num_labels = len(label_list)

    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab

    args.model_type = args.model_type.lower()
    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
thomwolf's avatar
thomwolf committed
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
    config = config_class.from_pretrained(
        args.config_name if args.config_name else args.model_name_or_path,
        num_labels=num_labels,
        finetuning_task=args.task_name,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
    tokenizer = tokenizer_class.from_pretrained(
        args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
        do_lower_case=args.do_lower_case,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
    model = model_class.from_pretrained(
        args.model_name_or_path,
        from_tf=bool(".ckpt" in args.model_name_or_path),
        config=config,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608

    if args.local_rank == 0:
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab

    model.to(args.device)

    logger.info("Training/evaluation parameters %s", args)

    # Training
    if args.do_train:
        train_dataset, _ = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=False)
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)

    # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

        logger.info("Saving model checkpoint to %s", args.output_dir)
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
thomwolf's avatar
thomwolf committed
609
610
611
        model_to_save = (
            model.module if hasattr(model, "module") else model
        )  # Take care of distributed/parallel training
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
612
613
614
615
        model_to_save.save_pretrained(args.output_dir)
        tokenizer.save_pretrained(args.output_dir)

        # Good practice: save your training arguments together with the trained model
thomwolf's avatar
thomwolf committed
616
        torch.save(args, os.path.join(args.output_dir, "training_args.bin"))
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
617
618
619
620
621
622
623
624
625
626
627
628

        # Load a trained model and vocabulary that you have fine-tuned
        model = model_class.from_pretrained(args.output_dir)
        tokenizer = tokenizer_class.from_pretrained(args.output_dir)
        model.to(args.device)

    # Evaluation
    results = {}
    if args.do_eval and args.local_rank in [-1, 0]:
        tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
        checkpoints = [args.output_dir]
        if args.eval_all_checkpoints:
thomwolf's avatar
thomwolf committed
629
630
631
            checkpoints = list(
                os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True))
            )
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
632
633
634
            logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN)  # Reduce logging
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
        for checkpoint in checkpoints:
thomwolf's avatar
thomwolf committed
635
636
637
            global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else ""
            prefix = checkpoint.split("/")[-1] if checkpoint.find("checkpoint") != -1 else ""

Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
638
639
640
            model = model_class.from_pretrained(checkpoint)
            model.to(args.device)
            result = evaluate(args, model, tokenizer, prefix=prefix)
thomwolf's avatar
thomwolf committed
641
            result = dict((k + "_{}".format(global_step), v) for k, v in result.items())
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
642
643
644
645
646
647
648
            results.update(result)

    return results


if __name__ == "__main__":
    main()