test_onnx_v2.py 22.1 KB
Newer Older
1
import os
2
import unittest
3
4
5
6
7
from pathlib import Path
from tempfile import NamedTemporaryFile
from unittest import TestCase
from unittest.mock import patch

lewtun's avatar
lewtun committed
8
import pytest
9
from parameterized import parameterized
10

11
from transformers import AutoConfig, PreTrainedTokenizerBase, is_tf_available, is_torch_available
12
13
14
from transformers.onnx import (
    EXTERNAL_DATA_FORMAT_SIZE_LIMIT,
    OnnxConfig,
lewtun's avatar
lewtun committed
15
    OnnxConfigWithPast,
16
17
18
    ParameterFormat,
    validate_model_outputs,
)
19
20
21
22
23
from transformers.onnx.utils import (
    compute_effective_axis_dimension,
    compute_serialized_parameters_size,
    get_preprocessor,
)
24
from transformers.testing_utils import require_onnx, require_rjieba, require_tf, require_torch, require_vision, slow
25
26


27
if is_torch_available() or is_tf_available():
28
29
    from transformers.onnx.features import FeaturesManager

30
31
32
33
34
if is_torch_available():
    import torch

    from transformers.models.deberta import modeling_deberta

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

@require_onnx
class OnnxUtilsTestCaseV2(TestCase):
    """
    Cover all the utilities involved to export ONNX models
    """

    def test_compute_effective_axis_dimension(self):
        """
        When exporting ONNX model with dynamic axis (batch or sequence) we set batch_size and/or sequence_length = -1.
        We cannot generate an effective tensor with axis dim == -1, so we trick by using some "fixed" values
        (> 1 to avoid ONNX squeezing the axis).

        This test ensure we are correctly replacing generated batch / sequence tensor with axis > 1
        """

        # Dynamic axis (batch, no token added by the tokenizer)
        self.assertEqual(compute_effective_axis_dimension(-1, fixed_dimension=2, num_token_to_add=0), 2)

        # Static axis (batch, no token added by the tokenizer)
        self.assertEqual(compute_effective_axis_dimension(0, fixed_dimension=2, num_token_to_add=0), 2)

        # Dynamic axis (sequence, token added by the tokenizer 2 (no pair))
        self.assertEqual(compute_effective_axis_dimension(0, fixed_dimension=8, num_token_to_add=2), 6)
        self.assertEqual(compute_effective_axis_dimension(0, fixed_dimension=8, num_token_to_add=2), 6)

        # Dynamic axis (sequence, token added by the tokenizer 3 (pair))
        self.assertEqual(compute_effective_axis_dimension(0, fixed_dimension=8, num_token_to_add=3), 5)
        self.assertEqual(compute_effective_axis_dimension(0, fixed_dimension=8, num_token_to_add=3), 5)

    def test_compute_parameters_serialized_size(self):
        """
        This test ensures we compute a "correct" approximation of the underlying storage requirement (size) for all the
        parameters for the specified parameter's dtype.
        """
        self.assertEqual(compute_serialized_parameters_size(2, ParameterFormat.Float), 2 * ParameterFormat.Float.size)

    def test_flatten_output_collection_property(self):
        """
        This test ensures we correctly flatten nested collection such as the one we use when returning past_keys.
        past_keys = Tuple[Tuple]

        ONNX exporter will export nested collections as ${collection_name}.${level_idx_0}.${level_idx_1}...${idx_n}
        """
        self.assertEqual(
80
            OnnxConfig.flatten_output_collection_property("past_key", [[0], [1], [2]]),
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
            {
                "past_key.0": 0,
                "past_key.1": 1,
                "past_key.2": 2,
            },
        )


class OnnxConfigTestCaseV2(TestCase):
    """
    Cover the test for models default.

    Default means no specific features is being enabled on the model.
    """

    @patch.multiple(OnnxConfig, __abstractmethods__=set())
    def test_use_external_data_format(self):
        """
        External data format is required only if the serialized size of the parameters if bigger than 2Gb
        """
        TWO_GB_LIMIT = EXTERNAL_DATA_FORMAT_SIZE_LIMIT

        # No parameters
        self.assertFalse(OnnxConfig.use_external_data_format(0))

        # Some parameters
        self.assertFalse(OnnxConfig.use_external_data_format(1))

        # Almost 2Gb parameters
        self.assertFalse(OnnxConfig.use_external_data_format((TWO_GB_LIMIT - 1) // ParameterFormat.Float.size))

        # Exactly 2Gb parameters
        self.assertTrue(OnnxConfig.use_external_data_format(TWO_GB_LIMIT))

        # More than 2Gb parameters
        self.assertTrue(OnnxConfig.use_external_data_format((TWO_GB_LIMIT + 1) // ParameterFormat.Float.size))


class OnnxConfigWithPastTestCaseV2(TestCase):
    """
    Cover the tests for model which have use_cache feature (i.e. "with_past" for ONNX)
    """

124
125
126
127
128
129
    SUPPORTED_WITH_PAST_CONFIGS = {}
    # SUPPORTED_WITH_PAST_CONFIGS = {
    #     ("BART", BartConfig),
    #     ("GPT2", GPT2Config),
    #     # ("T5", T5Config)
    # }
130
131
132
133
134
135
136
137
138

    @patch.multiple(OnnxConfigWithPast, __abstractmethods__=set())
    def test_use_past(self):
        """
        Ensure the use_past variable is correctly being set
        """
        for name, config in OnnxConfigWithPastTestCaseV2.SUPPORTED_WITH_PAST_CONFIGS:
            with self.subTest(name):
                self.assertFalse(
139
140
                    OnnxConfigWithPast.from_model_config(config()).use_past,
                    "OnnxConfigWithPast.from_model_config() should not use_past",
141
142
143
                )

                self.assertTrue(
144
145
                    OnnxConfigWithPast.with_past(config()).use_past,
                    "OnnxConfigWithPast.from_model_config() should use_past",
146
147
148
149
150
151
152
153
154
155
                )

    @patch.multiple(OnnxConfigWithPast, __abstractmethods__=set())
    def test_values_override(self):
        """
        Ensure the use_past variable correctly set the `use_cache` value in model's configuration
        """
        for name, config in OnnxConfigWithPastTestCaseV2.SUPPORTED_WITH_PAST_CONFIGS:
            with self.subTest(name):
                # without past
156
                onnx_config_default = OnnxConfigWithPast.from_model_config(config())
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
                self.assertIsNotNone(onnx_config_default.values_override, "values_override should not be None")
                self.assertIn("use_cache", onnx_config_default.values_override, "use_cache should be present")
                self.assertFalse(
                    onnx_config_default.values_override["use_cache"], "use_cache should be False if not using past"
                )

                # with past
                onnx_config_default = OnnxConfigWithPast.with_past(config())
                self.assertIsNotNone(onnx_config_default.values_override, "values_override should not be None")
                self.assertIn("use_cache", onnx_config_default.values_override, "use_cache should be present")
                self.assertTrue(
                    onnx_config_default.values_override["use_cache"], "use_cache should be False if not using past"
                )


172
PYTORCH_EXPORT_MODELS = {
173
174
175
176
    ("albert", "hf-internal-testing/tiny-random-AlbertModel"),
    ("bert", "hf-internal-testing/tiny-random-BertModel"),
    ("beit", "microsoft/beit-base-patch16-224"),
    ("big-bird", "hf-internal-testing/tiny-random-BigBirdModel"),
177
    ("camembert", "camembert-base"),
178
179
180
181
182
183
184
185
    ("clip", "hf-internal-testing/tiny-random-CLIPModel"),
    ("convbert", "hf-internal-testing/tiny-random-ConvBertModel"),
    ("codegen", "hf-internal-testing/tiny-random-CodeGenModel"),
    ("data2vec-text", "hf-internal-testing/tiny-random-Data2VecTextModel"),
    ("data2vec-vision", "facebook/data2vec-vision-base"),
    ("deberta", "hf-internal-testing/tiny-random-DebertaModel"),
    ("deberta-v2", "hf-internal-testing/tiny-random-DebertaV2Model"),
    ("deit", "facebook/deit-small-patch16-224"),
186
    ("convnext", "facebook/convnext-tiny-224"),
regisss's avatar
regisss committed
187
    ("detr", "facebook/detr-resnet-50"),
188
189
190
191
    ("distilbert", "hf-internal-testing/tiny-random-DistilBertModel"),
    ("electra", "hf-internal-testing/tiny-random-ElectraModel"),
    ("groupvit", "nvidia/groupvit-gcc-yfcc"),
    ("ibert", "kssteven/ibert-roberta-base"),
192
    ("imagegpt", "openai/imagegpt-small"),
193
194
195
196
197
    ("levit", "facebook/levit-128S"),
    ("layoutlm", "hf-internal-testing/tiny-random-LayoutLMModel"),
    ("layoutlmv3", "microsoft/layoutlmv3-base"),
    ("longformer", "allenai/longformer-base-4096"),
    ("mobilebert", "hf-internal-testing/tiny-random-MobileBertModel"),
198
    ("mobilenet_v1", "google/mobilenet_v1_0.75_192"),
199
    ("mobilenet_v2", "google/mobilenet_v2_0.35_96"),
200
    ("mobilevit", "apple/mobilevit-small"),
201
    ("owlvit", "google/owlvit-base-patch32"),
202
203
    ("perceiver", "hf-internal-testing/tiny-random-PerceiverModel", ("masked-lm", "sequence-classification")),
    ("perceiver", "hf-internal-testing/tiny-random-PerceiverModel", ("image-classification",)),
204
    ("poolformer", "sail/poolformer_s12"),
Erin's avatar
Erin committed
205
    ("rembert", "google/rembert"),
206
207
208
    ("resnet", "microsoft/resnet-50"),
    ("roberta", "hf-internal-testing/tiny-random-RobertaModel"),
    ("roformer", "hf-internal-testing/tiny-random-RoFormerModel"),
209
    ("segformer", "nvidia/segformer-b0-finetuned-ade-512-512"),
210
    ("squeezebert", "hf-internal-testing/tiny-random-SqueezeBertModel"),
211
    ("swin", "microsoft/swin-tiny-patch4-window7-224"),
212
213
    ("vit", "google/vit-base-patch16-224"),
    ("yolos", "hustvl/yolos-tiny"),
214
    ("whisper", "openai/whisper-tiny.en"),
215
216
    ("xlm", "hf-internal-testing/tiny-random-XLMModel"),
    ("xlm-roberta", "hf-internal-testing/tiny-random-XLMRobertaXLModel"),
217
218
}

219
220
221
222
PYTORCH_EXPORT_ENCODER_DECODER_MODELS = {
    ("vision-encoder-decoder", "nlpconnect/vit-gpt2-image-captioning"),
}

223
PYTORCH_EXPORT_WITH_PAST_MODELS = {
224
225
226
    ("bloom", "hf-internal-testing/tiny-random-BloomModel"),
    ("gpt2", "hf-internal-testing/tiny-random-GPT2Model"),
    ("gpt-neo", "hf-internal-testing/tiny-random-GPTNeoModel"),
227
228
229
}

PYTORCH_EXPORT_SEQ2SEQ_WITH_PAST_MODELS = {
230
231
232
233
234
    ("bart", "hf-internal-testing/tiny-random-BartModel"),
    ("bigbird-pegasus", "hf-internal-testing/tiny-random-BigBirdPegasusModel"),
    ("blenderbot-small", "facebook/blenderbot_small-90M"),
    ("blenderbot", "hf-internal-testing/tiny-random-BlenderbotModel"),
    ("longt5", "hf-internal-testing/tiny-random-LongT5Model"),
235
    ("marian", "Helsinki-NLP/opus-mt-en-de"),
236
    ("mbart", "sshleifer/tiny-mbart"),
237
    ("mt5", "google/mt5-base"),
238
239
    ("m2m-100", "hf-internal-testing/tiny-random-M2M100Model"),
    ("t5", "hf-internal-testing/tiny-random-T5Model"),
240
241
}

242
# TODO(lewtun): Include the same model types in `PYTORCH_EXPORT_MODELS` once TensorFlow has parity with the PyTorch model implementations.
243
244
TENSORFLOW_EXPORT_DEFAULT_MODELS = {
    ("albert", "hf-internal-testing/tiny-albert"),
245
    ("bert", "hf-internal-testing/tiny-random-BertModel"),
246
    ("camembert", "camembert-base"),
247
248
    ("distilbert", "hf-internal-testing/tiny-random-DistilBertModel"),
    ("roberta", "hf-internal-testing/tiny-random-RobertaModel"),
249
250
}

251
252
# TODO(lewtun): Include the same model types in `PYTORCH_EXPORT_WITH_PAST_MODELS` once TensorFlow has parity with the PyTorch model implementations.
TENSORFLOW_EXPORT_WITH_PAST_MODELS = {}
253

254
255
# TODO(lewtun): Include the same model types in `PYTORCH_EXPORT_SEQ2SEQ_WITH_PAST_MODELS` once TensorFlow has parity with the PyTorch model implementations.
TENSORFLOW_EXPORT_SEQ2SEQ_WITH_PAST_MODELS = {}
256

257
258
259

def _get_models_to_test(export_models_list):
    models_to_test = []
260
    if is_torch_available() or is_tf_available():
261
262
263
264
265
266
        for name, model, *features in export_models_list:
            if features:
                feature_config_mapping = {
                    feature: FeaturesManager.get_config(name, feature) for _ in features for feature in _
                }
            else:
267
268
269
270
271
272
                # pre-process the model names
                model_type = name.replace("_", "-")
                model_name = getattr(model, "name", "")
                feature_config_mapping = FeaturesManager.get_supported_features_for_model_type(
                    model_type, model_name=model_name
                )
273
274

            for feature, onnx_config_class_constructor in feature_config_mapping.items():
275
276
277
278
279
                models_to_test.append((f"{name}_{feature}", name, model, feature, onnx_config_class_constructor))
        return sorted(models_to_test)
    else:
        # Returning some dummy test that should not be ever called because of the @require_torch / @require_tf
        # decorators.
280
281
        # The reason for not returning an empty list is because parameterized.expand complains when it's empty.
        return [("dummy", "dummy", "dummy", "dummy", OnnxConfig.from_model_config)]
282
283
284
285
286
287
288


class OnnxExportTestCaseV2(TestCase):
    """
    Integration tests ensuring supported models are correctly exported
    """

289
290
291
    def _onnx_export(
        self, test_name, name, model_name, feature, onnx_config_class_constructor, device="cpu", framework="pt"
    ):
292
293
        from transformers.onnx import export

294
        model_class = FeaturesManager.get_model_class_for_feature(feature, framework=framework)
lewtun's avatar
lewtun committed
295
        config = AutoConfig.from_pretrained(model_name)
296
        model = model_class.from_config(config)
Yih-Dar's avatar
Yih-Dar committed
297
298
299
300
301
302

        # Dynamic axes aren't supported for YOLO-like models. This means they cannot be exported to ONNX on CUDA devices.
        # See: https://github.com/ultralytics/yolov5/pull/8378
        if model.__class__.__name__.startswith("Yolos") and device != "cpu":
            return

303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
        # ONNX inference fails with the following name, feature, framework parameterizations
        # See: https://github.com/huggingface/transformers/issues/19357
        if (name, feature, framework) in {
            ("deberta-v2", "question-answering", "pt"),
            ("deberta-v2", "multiple-choice", "pt"),
            ("roformer", "multiple-choice", "pt"),
            ("groupvit", "default", "pt"),
            ("perceiver", "masked-lm", "pt"),
            ("perceiver", "sequence-classification", "pt"),
            ("perceiver", "image-classification", "pt"),
            ("bert", "multiple-choice", "tf"),
            ("camembert", "multiple-choice", "tf"),
            ("roberta", "multiple-choice", "tf"),
        }:
            return

319
        onnx_config = onnx_config_class_constructor(model.config)
320

lewtun's avatar
lewtun committed
321
        if is_torch_available():
322
            from transformers.utils import torch_version
lewtun's avatar
lewtun committed
323
324
325

            if torch_version < onnx_config.torch_onnx_minimum_version:
                pytest.skip(
Sylvain Gugger's avatar
Sylvain Gugger committed
326
327
                    "Skipping due to incompatible PyTorch version. Minimum required is"
                    f" {onnx_config.torch_onnx_minimum_version}, got: {torch_version}"
lewtun's avatar
lewtun committed
328
329
                )

330
331
332
333
334
        preprocessor = get_preprocessor(model_name)

        # Useful for causal lm models that do not use pad tokens.
        if isinstance(preprocessor, PreTrainedTokenizerBase) and not getattr(config, "pad_token_id", None):
            config.pad_token_id = preprocessor.eos_token_id
lewtun's avatar
lewtun committed
335

336
337
338
        with NamedTemporaryFile("w") as output:
            try:
                onnx_inputs, onnx_outputs = export(
339
                    preprocessor, model, onnx_config, onnx_config.default_onnx_opset, Path(output.name), device=device
340
341
342
                )
                validate_model_outputs(
                    onnx_config,
lewtun's avatar
lewtun committed
343
                    preprocessor,
344
345
346
347
348
349
350
                    model,
                    Path(output.name),
                    onnx_outputs,
                    onnx_config.atol_for_validation,
                )
            except (RuntimeError, ValueError) as e:
                self.fail(f"{name}, {feature} -> {e}")
351

352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
    def _onnx_export_encoder_decoder_models(
        self, test_name, name, model_name, feature, onnx_config_class_constructor, device="cpu"
    ):
        from transformers import AutoFeatureExtractor, AutoTokenizer
        from transformers.onnx import export

        model_class = FeaturesManager.get_model_class_for_feature(feature)
        config = AutoConfig.from_pretrained(model_name)
        model = model_class.from_config(config)

        onnx_config = onnx_config_class_constructor(model.config)

        if is_torch_available():
            from transformers.utils import torch_version

            if torch_version < onnx_config.torch_onnx_minimum_version:
                pytest.skip(
                    "Skipping due to incompatible PyTorch version. Minimum required is"
                    f" {onnx_config.torch_onnx_minimum_version}, got: {torch_version}"
                )

        encoder_model = model.get_encoder()
        decoder_model = model.get_decoder()

        encoder_onnx_config = onnx_config.get_encoder_config(encoder_model.config)
        decoder_onnx_config = onnx_config.get_decoder_config(encoder_model.config, decoder_model.config, feature)

        preprocessor = AutoFeatureExtractor.from_pretrained(model_name)

        onnx_opset = max(encoder_onnx_config.default_onnx_opset, decoder_onnx_config.default_onnx_opset)

        with NamedTemporaryFile("w") as encoder_output:
            onnx_inputs, onnx_outputs = export(
                preprocessor, encoder_model, encoder_onnx_config, onnx_opset, Path(encoder_output.name), device=device
            )
            validate_model_outputs(
                encoder_onnx_config,
                preprocessor,
                encoder_model,
                Path(encoder_output.name),
                onnx_outputs,
                encoder_onnx_config.atol_for_validation,
            )

        preprocessor = AutoTokenizer.from_pretrained(model_name)

        with NamedTemporaryFile("w") as decoder_output:
399
            _, onnx_outputs = export(
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
                preprocessor,
                decoder_model,
                decoder_onnx_config,
                onnx_config.default_onnx_opset,
                Path(decoder_output.name),
                device=device,
            )
            validate_model_outputs(
                decoder_onnx_config,
                preprocessor,
                decoder_model,
                Path(decoder_output.name),
                onnx_outputs,
                decoder_onnx_config.atol_for_validation,
            )

416
    @parameterized.expand(_get_models_to_test(PYTORCH_EXPORT_MODELS))
417
418
    @slow
    @require_torch
lewtun's avatar
lewtun committed
419
    @require_vision
420
    @require_rjieba
421
    def test_pytorch_export(self, test_name, name, model_name, feature, onnx_config_class_constructor):
422
        self._onnx_export(test_name, name, model_name, feature, onnx_config_class_constructor)
423

424
425
426
427
428
429
430
431
    @parameterized.expand(_get_models_to_test(PYTORCH_EXPORT_MODELS))
    @slow
    @require_torch
    @require_vision
    @require_rjieba
    def test_pytorch_export_on_cuda(self, test_name, name, model_name, feature, onnx_config_class_constructor):
        self._onnx_export(test_name, name, model_name, feature, onnx_config_class_constructor, device="cuda")

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
    @parameterized.expand(_get_models_to_test(PYTORCH_EXPORT_ENCODER_DECODER_MODELS))
    @slow
    @require_torch
    @require_vision
    @require_rjieba
    def test_pytorch_export_encoder_decoder_models(
        self, test_name, name, model_name, feature, onnx_config_class_constructor
    ):
        self._onnx_export_encoder_decoder_models(test_name, name, model_name, feature, onnx_config_class_constructor)

    @parameterized.expand(_get_models_to_test(PYTORCH_EXPORT_ENCODER_DECODER_MODELS))
    @slow
    @require_torch
    @require_vision
    @require_rjieba
    def test_pytorch_export_encoder_decoder_models_on_cuda(
        self, test_name, name, model_name, feature, onnx_config_class_constructor
    ):
        self._onnx_export_encoder_decoder_models(
            test_name, name, model_name, feature, onnx_config_class_constructor, device="cuda"
        )

454
455
456
457
    @parameterized.expand(_get_models_to_test(PYTORCH_EXPORT_WITH_PAST_MODELS))
    @slow
    @require_torch
    def test_pytorch_export_with_past(self, test_name, name, model_name, feature, onnx_config_class_constructor):
458
        self._onnx_export(test_name, name, model_name, feature, onnx_config_class_constructor)
459

460
461
462
463
464
465
    @parameterized.expand(_get_models_to_test(PYTORCH_EXPORT_SEQ2SEQ_WITH_PAST_MODELS))
    @slow
    @require_torch
    def test_pytorch_export_seq2seq_with_past(
        self, test_name, name, model_name, feature, onnx_config_class_constructor
    ):
466
467
468
469
470
        self._onnx_export(test_name, name, model_name, feature, onnx_config_class_constructor)

    @parameterized.expand(_get_models_to_test(TENSORFLOW_EXPORT_DEFAULT_MODELS))
    @slow
    @require_tf
lewtun's avatar
lewtun committed
471
    @require_vision
472
    def test_tensorflow_export(self, test_name, name, model_name, feature, onnx_config_class_constructor):
473
        self._onnx_export(test_name, name, model_name, feature, onnx_config_class_constructor, framework="tf")
474

475
    @parameterized.expand(_get_models_to_test(TENSORFLOW_EXPORT_WITH_PAST_MODELS), skip_on_empty=True)
476
477
478
    @slow
    @require_tf
    def test_tensorflow_export_with_past(self, test_name, name, model_name, feature, onnx_config_class_constructor):
479
        self._onnx_export(test_name, name, model_name, feature, onnx_config_class_constructor, framework="tf")
480

481
    @parameterized.expand(_get_models_to_test(TENSORFLOW_EXPORT_SEQ2SEQ_WITH_PAST_MODELS), skip_on_empty=True)
482
483
484
485
486
    @slow
    @require_tf
    def test_tensorflow_export_seq2seq_with_past(
        self, test_name, name, model_name, feature, onnx_config_class_constructor
    ):
487
        self._onnx_export(test_name, name, model_name, feature, onnx_config_class_constructor, framework="tf")
488
489
490
491
492


class StableDropoutTestCase(TestCase):
    """Tests export of StableDropout module."""

493
    @unittest.skip("torch 2.0.0 gives `torch.onnx.errors.OnnxExporterError: Module onnx is not installed!`.")
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
    @require_torch
    @pytest.mark.filterwarnings("ignore:.*Dropout.*:UserWarning:torch.onnx.*")  # torch.onnx is spammy.
    def test_training(self):
        """Tests export of StableDropout in training mode."""
        devnull = open(os.devnull, "wb")
        # drop_prob must be > 0 for the test to be meaningful
        sd = modeling_deberta.StableDropout(0.1)
        # Avoid warnings in training mode
        do_constant_folding = False
        # Dropout is a no-op in inference mode
        training = torch.onnx.TrainingMode.PRESERVE
        input = (torch.randn(2, 2),)

        torch.onnx.export(
            sd,
            input,
            devnull,
            opset_version=12,  # Minimum supported
            do_constant_folding=do_constant_folding,
            training=training,
        )

        # Expected to fail with opset_version < 12
        with self.assertRaises(Exception):
            torch.onnx.export(
                sd,
                input,
                devnull,
                opset_version=11,
                do_constant_folding=do_constant_folding,
                training=training,
            )