test_onnx_v2.py 22.2 KB
Newer Older
1
import os
2
3
4
5
6
from pathlib import Path
from tempfile import NamedTemporaryFile
from unittest import TestCase
from unittest.mock import patch

lewtun's avatar
lewtun committed
7
8
import pytest

9
from parameterized import parameterized
10
from transformers import AutoConfig, PreTrainedTokenizerBase, is_tf_available, is_torch_available
11
12
13
from transformers.onnx import (
    EXTERNAL_DATA_FORMAT_SIZE_LIMIT,
    OnnxConfig,
lewtun's avatar
lewtun committed
14
    OnnxConfigWithPast,
15
16
17
18
    ParameterFormat,
    export,
    validate_model_outputs,
)
19
20
21
22
23
from transformers.onnx.utils import (
    compute_effective_axis_dimension,
    compute_serialized_parameters_size,
    get_preprocessor,
)
24
from transformers.testing_utils import require_onnx, require_rjieba, require_tf, require_torch, require_vision, slow
25
26


27
if is_torch_available() or is_tf_available():
28
29
    from transformers.onnx.features import FeaturesManager

30
31
32
33
34
if is_torch_available():
    import torch

    from transformers.models.deberta import modeling_deberta

35
36
37
38
39
40
41

@require_onnx
class OnnxUtilsTestCaseV2(TestCase):
    """
    Cover all the utilities involved to export ONNX models
    """

42
43
44
45
46
47
48
49
50
    @require_torch
    @patch("transformers.onnx.convert.is_torch_onnx_dict_inputs_support_available", return_value=False)
    def test_ensure_pytorch_version_ge_1_8_0(self, mock_is_torch_onnx_dict_inputs_support_available):
        """
        Ensure we raise an Exception if the pytorch version is unsupported (< 1.8.0)
        """
        self.assertRaises(AssertionError, export, None, None, None, None, None)
        mock_is_torch_onnx_dict_inputs_support_available.assert_called()

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
    def test_compute_effective_axis_dimension(self):
        """
        When exporting ONNX model with dynamic axis (batch or sequence) we set batch_size and/or sequence_length = -1.
        We cannot generate an effective tensor with axis dim == -1, so we trick by using some "fixed" values
        (> 1 to avoid ONNX squeezing the axis).

        This test ensure we are correctly replacing generated batch / sequence tensor with axis > 1
        """

        # Dynamic axis (batch, no token added by the tokenizer)
        self.assertEqual(compute_effective_axis_dimension(-1, fixed_dimension=2, num_token_to_add=0), 2)

        # Static axis (batch, no token added by the tokenizer)
        self.assertEqual(compute_effective_axis_dimension(0, fixed_dimension=2, num_token_to_add=0), 2)

        # Dynamic axis (sequence, token added by the tokenizer 2 (no pair))
        self.assertEqual(compute_effective_axis_dimension(0, fixed_dimension=8, num_token_to_add=2), 6)
        self.assertEqual(compute_effective_axis_dimension(0, fixed_dimension=8, num_token_to_add=2), 6)

        # Dynamic axis (sequence, token added by the tokenizer 3 (pair))
        self.assertEqual(compute_effective_axis_dimension(0, fixed_dimension=8, num_token_to_add=3), 5)
        self.assertEqual(compute_effective_axis_dimension(0, fixed_dimension=8, num_token_to_add=3), 5)

    def test_compute_parameters_serialized_size(self):
        """
        This test ensures we compute a "correct" approximation of the underlying storage requirement (size) for all the
        parameters for the specified parameter's dtype.
        """
        self.assertEqual(compute_serialized_parameters_size(2, ParameterFormat.Float), 2 * ParameterFormat.Float.size)

    def test_flatten_output_collection_property(self):
        """
        This test ensures we correctly flatten nested collection such as the one we use when returning past_keys.
        past_keys = Tuple[Tuple]

        ONNX exporter will export nested collections as ${collection_name}.${level_idx_0}.${level_idx_1}...${idx_n}
        """
        self.assertEqual(
89
            OnnxConfig.flatten_output_collection_property("past_key", [[0], [1], [2]]),
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
            {
                "past_key.0": 0,
                "past_key.1": 1,
                "past_key.2": 2,
            },
        )


class OnnxConfigTestCaseV2(TestCase):
    """
    Cover the test for models default.

    Default means no specific features is being enabled on the model.
    """

    @patch.multiple(OnnxConfig, __abstractmethods__=set())
    def test_use_external_data_format(self):
        """
        External data format is required only if the serialized size of the parameters if bigger than 2Gb
        """
        TWO_GB_LIMIT = EXTERNAL_DATA_FORMAT_SIZE_LIMIT

        # No parameters
        self.assertFalse(OnnxConfig.use_external_data_format(0))

        # Some parameters
        self.assertFalse(OnnxConfig.use_external_data_format(1))

        # Almost 2Gb parameters
        self.assertFalse(OnnxConfig.use_external_data_format((TWO_GB_LIMIT - 1) // ParameterFormat.Float.size))

        # Exactly 2Gb parameters
        self.assertTrue(OnnxConfig.use_external_data_format(TWO_GB_LIMIT))

        # More than 2Gb parameters
        self.assertTrue(OnnxConfig.use_external_data_format((TWO_GB_LIMIT + 1) // ParameterFormat.Float.size))


class OnnxConfigWithPastTestCaseV2(TestCase):
    """
    Cover the tests for model which have use_cache feature (i.e. "with_past" for ONNX)
    """

133
134
135
136
137
138
    SUPPORTED_WITH_PAST_CONFIGS = {}
    # SUPPORTED_WITH_PAST_CONFIGS = {
    #     ("BART", BartConfig),
    #     ("GPT2", GPT2Config),
    #     # ("T5", T5Config)
    # }
139
140
141
142
143
144
145
146
147

    @patch.multiple(OnnxConfigWithPast, __abstractmethods__=set())
    def test_use_past(self):
        """
        Ensure the use_past variable is correctly being set
        """
        for name, config in OnnxConfigWithPastTestCaseV2.SUPPORTED_WITH_PAST_CONFIGS:
            with self.subTest(name):
                self.assertFalse(
148
149
                    OnnxConfigWithPast.from_model_config(config()).use_past,
                    "OnnxConfigWithPast.from_model_config() should not use_past",
150
151
152
                )

                self.assertTrue(
153
154
                    OnnxConfigWithPast.with_past(config()).use_past,
                    "OnnxConfigWithPast.from_model_config() should use_past",
155
156
157
158
159
160
161
162
163
164
                )

    @patch.multiple(OnnxConfigWithPast, __abstractmethods__=set())
    def test_values_override(self):
        """
        Ensure the use_past variable correctly set the `use_cache` value in model's configuration
        """
        for name, config in OnnxConfigWithPastTestCaseV2.SUPPORTED_WITH_PAST_CONFIGS:
            with self.subTest(name):
                # without past
165
                onnx_config_default = OnnxConfigWithPast.from_model_config(config())
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
                self.assertIsNotNone(onnx_config_default.values_override, "values_override should not be None")
                self.assertIn("use_cache", onnx_config_default.values_override, "use_cache should be present")
                self.assertFalse(
                    onnx_config_default.values_override["use_cache"], "use_cache should be False if not using past"
                )

                # with past
                onnx_config_default = OnnxConfigWithPast.with_past(config())
                self.assertIsNotNone(onnx_config_default.values_override, "values_override should not be None")
                self.assertIn("use_cache", onnx_config_default.values_override, "use_cache should be present")
                self.assertTrue(
                    onnx_config_default.values_override["use_cache"], "use_cache should be False if not using past"
                )


181
PYTORCH_EXPORT_MODELS = {
182
183
184
185
    ("albert", "hf-internal-testing/tiny-random-AlbertModel"),
    ("bert", "hf-internal-testing/tiny-random-BertModel"),
    ("beit", "microsoft/beit-base-patch16-224"),
    ("big-bird", "hf-internal-testing/tiny-random-BigBirdModel"),
186
    ("camembert", "camembert-base"),
187
188
189
190
191
192
193
194
    ("clip", "hf-internal-testing/tiny-random-CLIPModel"),
    ("convbert", "hf-internal-testing/tiny-random-ConvBertModel"),
    ("codegen", "hf-internal-testing/tiny-random-CodeGenModel"),
    ("data2vec-text", "hf-internal-testing/tiny-random-Data2VecTextModel"),
    ("data2vec-vision", "facebook/data2vec-vision-base"),
    ("deberta", "hf-internal-testing/tiny-random-DebertaModel"),
    ("deberta-v2", "hf-internal-testing/tiny-random-DebertaV2Model"),
    ("deit", "facebook/deit-small-patch16-224"),
195
    ("convnext", "facebook/convnext-tiny-224"),
regisss's avatar
regisss committed
196
    ("detr", "facebook/detr-resnet-50"),
197
198
199
200
    ("distilbert", "hf-internal-testing/tiny-random-DistilBertModel"),
    ("electra", "hf-internal-testing/tiny-random-ElectraModel"),
    ("groupvit", "nvidia/groupvit-gcc-yfcc"),
    ("ibert", "kssteven/ibert-roberta-base"),
201
    ("imagegpt", "openai/imagegpt-small"),
202
203
204
205
206
    ("levit", "facebook/levit-128S"),
    ("layoutlm", "hf-internal-testing/tiny-random-LayoutLMModel"),
    ("layoutlmv3", "microsoft/layoutlmv3-base"),
    ("longformer", "allenai/longformer-base-4096"),
    ("mobilebert", "hf-internal-testing/tiny-random-MobileBertModel"),
207
    ("mobilenet_v1", "google/mobilenet_v1_0.75_192"),
208
    ("mobilenet_v2", "google/mobilenet_v2_0.35_96"),
209
    ("mobilevit", "apple/mobilevit-small"),
210
    ("owlvit", "google/owlvit-base-patch32"),
211
212
213
214
215
    ("perceiver", "hf-internal-testing/tiny-random-PerceiverModel", ("masked-lm", "sequence-classification")),
    ("perceiver", "hf-internal-testing/tiny-random-PerceiverModel", ("image-classification",)),
    ("resnet", "microsoft/resnet-50"),
    ("roberta", "hf-internal-testing/tiny-random-RobertaModel"),
    ("roformer", "hf-internal-testing/tiny-random-RoFormerModel"),
216
    ("segformer", "nvidia/segformer-b0-finetuned-ade-512-512"),
217
    ("squeezebert", "hf-internal-testing/tiny-random-SqueezeBertModel"),
218
    ("swin", "microsoft/swin-tiny-patch4-window7-224"),
219
220
    ("vit", "google/vit-base-patch16-224"),
    ("yolos", "hustvl/yolos-tiny"),
221
    ("whisper", "openai/whisper-tiny.en"),
222
223
    ("xlm", "hf-internal-testing/tiny-random-XLMModel"),
    ("xlm-roberta", "hf-internal-testing/tiny-random-XLMRobertaXLModel"),
224
225
}

226
227
228
229
PYTORCH_EXPORT_ENCODER_DECODER_MODELS = {
    ("vision-encoder-decoder", "nlpconnect/vit-gpt2-image-captioning"),
}

230
PYTORCH_EXPORT_WITH_PAST_MODELS = {
231
232
233
    ("bloom", "hf-internal-testing/tiny-random-BloomModel"),
    ("gpt2", "hf-internal-testing/tiny-random-GPT2Model"),
    ("gpt-neo", "hf-internal-testing/tiny-random-GPTNeoModel"),
234
235
236
}

PYTORCH_EXPORT_SEQ2SEQ_WITH_PAST_MODELS = {
237
238
239
240
241
    ("bart", "hf-internal-testing/tiny-random-BartModel"),
    ("bigbird-pegasus", "hf-internal-testing/tiny-random-BigBirdPegasusModel"),
    ("blenderbot-small", "facebook/blenderbot_small-90M"),
    ("blenderbot", "hf-internal-testing/tiny-random-BlenderbotModel"),
    ("longt5", "hf-internal-testing/tiny-random-LongT5Model"),
242
    ("marian", "Helsinki-NLP/opus-mt-en-de"),
243
    ("mbart", "sshleifer/tiny-mbart"),
244
    ("mt5", "google/mt5-base"),
245
246
    ("m2m-100", "hf-internal-testing/tiny-random-M2M100Model"),
    ("t5", "hf-internal-testing/tiny-random-T5Model"),
247
248
}

249
# TODO(lewtun): Include the same model types in `PYTORCH_EXPORT_MODELS` once TensorFlow has parity with the PyTorch model implementations.
250
251
TENSORFLOW_EXPORT_DEFAULT_MODELS = {
    ("albert", "hf-internal-testing/tiny-albert"),
252
    ("bert", "hf-internal-testing/tiny-random-BertModel"),
253
    ("camembert", "camembert-base"),
254
255
    ("distilbert", "hf-internal-testing/tiny-random-DistilBertModel"),
    ("roberta", "hf-internal-testing/tiny-random-RobertaModel"),
256
257
}

258
259
# TODO(lewtun): Include the same model types in `PYTORCH_EXPORT_WITH_PAST_MODELS` once TensorFlow has parity with the PyTorch model implementations.
TENSORFLOW_EXPORT_WITH_PAST_MODELS = {}
260

261
262
# TODO(lewtun): Include the same model types in `PYTORCH_EXPORT_SEQ2SEQ_WITH_PAST_MODELS` once TensorFlow has parity with the PyTorch model implementations.
TENSORFLOW_EXPORT_SEQ2SEQ_WITH_PAST_MODELS = {}
263

264
265
266

def _get_models_to_test(export_models_list):
    models_to_test = []
267
    if is_torch_available() or is_tf_available():
268
269
270
271
272
273
274
275
276
        for name, model, *features in export_models_list:
            if features:
                feature_config_mapping = {
                    feature: FeaturesManager.get_config(name, feature) for _ in features for feature in _
                }
            else:
                feature_config_mapping = FeaturesManager.get_supported_features_for_model_type(name)

            for feature, onnx_config_class_constructor in feature_config_mapping.items():
277
278
279
280
281
                models_to_test.append((f"{name}_{feature}", name, model, feature, onnx_config_class_constructor))
        return sorted(models_to_test)
    else:
        # Returning some dummy test that should not be ever called because of the @require_torch / @require_tf
        # decorators.
282
283
        # The reason for not returning an empty list is because parameterized.expand complains when it's empty.
        return [("dummy", "dummy", "dummy", "dummy", OnnxConfig.from_model_config)]
284
285
286
287
288
289
290


class OnnxExportTestCaseV2(TestCase):
    """
    Integration tests ensuring supported models are correctly exported
    """

291
292
293
    def _onnx_export(
        self, test_name, name, model_name, feature, onnx_config_class_constructor, device="cpu", framework="pt"
    ):
294
295
        from transformers.onnx import export

296
        model_class = FeaturesManager.get_model_class_for_feature(feature, framework=framework)
lewtun's avatar
lewtun committed
297
        config = AutoConfig.from_pretrained(model_name)
298
        model = model_class.from_config(config)
Yih-Dar's avatar
Yih-Dar committed
299
300
301
302
303
304

        # Dynamic axes aren't supported for YOLO-like models. This means they cannot be exported to ONNX on CUDA devices.
        # See: https://github.com/ultralytics/yolov5/pull/8378
        if model.__class__.__name__.startswith("Yolos") and device != "cpu":
            return

305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
        # ONNX inference fails with the following name, feature, framework parameterizations
        # See: https://github.com/huggingface/transformers/issues/19357
        if (name, feature, framework) in {
            ("deberta-v2", "question-answering", "pt"),
            ("deberta-v2", "multiple-choice", "pt"),
            ("roformer", "multiple-choice", "pt"),
            ("groupvit", "default", "pt"),
            ("perceiver", "masked-lm", "pt"),
            ("perceiver", "sequence-classification", "pt"),
            ("perceiver", "image-classification", "pt"),
            ("bert", "multiple-choice", "tf"),
            ("camembert", "multiple-choice", "tf"),
            ("roberta", "multiple-choice", "tf"),
        }:
            return

321
        onnx_config = onnx_config_class_constructor(model.config)
322

lewtun's avatar
lewtun committed
323
        if is_torch_available():
324
            from transformers.utils import torch_version
lewtun's avatar
lewtun committed
325
326
327

            if torch_version < onnx_config.torch_onnx_minimum_version:
                pytest.skip(
Sylvain Gugger's avatar
Sylvain Gugger committed
328
329
                    "Skipping due to incompatible PyTorch version. Minimum required is"
                    f" {onnx_config.torch_onnx_minimum_version}, got: {torch_version}"
lewtun's avatar
lewtun committed
330
331
                )

332
333
334
335
336
        preprocessor = get_preprocessor(model_name)

        # Useful for causal lm models that do not use pad tokens.
        if isinstance(preprocessor, PreTrainedTokenizerBase) and not getattr(config, "pad_token_id", None):
            config.pad_token_id = preprocessor.eos_token_id
lewtun's avatar
lewtun committed
337

338
339
340
        with NamedTemporaryFile("w") as output:
            try:
                onnx_inputs, onnx_outputs = export(
341
                    preprocessor, model, onnx_config, onnx_config.default_onnx_opset, Path(output.name), device=device
342
343
344
                )
                validate_model_outputs(
                    onnx_config,
lewtun's avatar
lewtun committed
345
                    preprocessor,
346
347
348
349
350
351
352
                    model,
                    Path(output.name),
                    onnx_outputs,
                    onnx_config.atol_for_validation,
                )
            except (RuntimeError, ValueError) as e:
                self.fail(f"{name}, {feature} -> {e}")
353

354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
    def _onnx_export_encoder_decoder_models(
        self, test_name, name, model_name, feature, onnx_config_class_constructor, device="cpu"
    ):
        from transformers import AutoFeatureExtractor, AutoTokenizer
        from transformers.onnx import export

        model_class = FeaturesManager.get_model_class_for_feature(feature)
        config = AutoConfig.from_pretrained(model_name)
        model = model_class.from_config(config)

        onnx_config = onnx_config_class_constructor(model.config)

        if is_torch_available():
            from transformers.utils import torch_version

            if torch_version < onnx_config.torch_onnx_minimum_version:
                pytest.skip(
                    "Skipping due to incompatible PyTorch version. Minimum required is"
                    f" {onnx_config.torch_onnx_minimum_version}, got: {torch_version}"
                )

        encoder_model = model.get_encoder()
        decoder_model = model.get_decoder()

        encoder_onnx_config = onnx_config.get_encoder_config(encoder_model.config)
        decoder_onnx_config = onnx_config.get_decoder_config(encoder_model.config, decoder_model.config, feature)

        preprocessor = AutoFeatureExtractor.from_pretrained(model_name)

        onnx_opset = max(encoder_onnx_config.default_onnx_opset, decoder_onnx_config.default_onnx_opset)

        with NamedTemporaryFile("w") as encoder_output:
            onnx_inputs, onnx_outputs = export(
                preprocessor, encoder_model, encoder_onnx_config, onnx_opset, Path(encoder_output.name), device=device
            )
            validate_model_outputs(
                encoder_onnx_config,
                preprocessor,
                encoder_model,
                Path(encoder_output.name),
                onnx_outputs,
                encoder_onnx_config.atol_for_validation,
            )

        preprocessor = AutoTokenizer.from_pretrained(model_name)

        with NamedTemporaryFile("w") as decoder_output:
401
            _, onnx_outputs = export(
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
                preprocessor,
                decoder_model,
                decoder_onnx_config,
                onnx_config.default_onnx_opset,
                Path(decoder_output.name),
                device=device,
            )
            validate_model_outputs(
                decoder_onnx_config,
                preprocessor,
                decoder_model,
                Path(decoder_output.name),
                onnx_outputs,
                decoder_onnx_config.atol_for_validation,
            )

418
    @parameterized.expand(_get_models_to_test(PYTORCH_EXPORT_MODELS))
419
420
    @slow
    @require_torch
lewtun's avatar
lewtun committed
421
    @require_vision
422
    @require_rjieba
423
    def test_pytorch_export(self, test_name, name, model_name, feature, onnx_config_class_constructor):
424
        self._onnx_export(test_name, name, model_name, feature, onnx_config_class_constructor)
425

426
427
428
429
430
431
432
433
    @parameterized.expand(_get_models_to_test(PYTORCH_EXPORT_MODELS))
    @slow
    @require_torch
    @require_vision
    @require_rjieba
    def test_pytorch_export_on_cuda(self, test_name, name, model_name, feature, onnx_config_class_constructor):
        self._onnx_export(test_name, name, model_name, feature, onnx_config_class_constructor, device="cuda")

434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
    @parameterized.expand(_get_models_to_test(PYTORCH_EXPORT_ENCODER_DECODER_MODELS))
    @slow
    @require_torch
    @require_vision
    @require_rjieba
    def test_pytorch_export_encoder_decoder_models(
        self, test_name, name, model_name, feature, onnx_config_class_constructor
    ):
        self._onnx_export_encoder_decoder_models(test_name, name, model_name, feature, onnx_config_class_constructor)

    @parameterized.expand(_get_models_to_test(PYTORCH_EXPORT_ENCODER_DECODER_MODELS))
    @slow
    @require_torch
    @require_vision
    @require_rjieba
    def test_pytorch_export_encoder_decoder_models_on_cuda(
        self, test_name, name, model_name, feature, onnx_config_class_constructor
    ):
        self._onnx_export_encoder_decoder_models(
            test_name, name, model_name, feature, onnx_config_class_constructor, device="cuda"
        )

456
457
458
459
    @parameterized.expand(_get_models_to_test(PYTORCH_EXPORT_WITH_PAST_MODELS))
    @slow
    @require_torch
    def test_pytorch_export_with_past(self, test_name, name, model_name, feature, onnx_config_class_constructor):
460
        self._onnx_export(test_name, name, model_name, feature, onnx_config_class_constructor)
461

462
463
464
465
466
467
    @parameterized.expand(_get_models_to_test(PYTORCH_EXPORT_SEQ2SEQ_WITH_PAST_MODELS))
    @slow
    @require_torch
    def test_pytorch_export_seq2seq_with_past(
        self, test_name, name, model_name, feature, onnx_config_class_constructor
    ):
468
469
470
471
472
        self._onnx_export(test_name, name, model_name, feature, onnx_config_class_constructor)

    @parameterized.expand(_get_models_to_test(TENSORFLOW_EXPORT_DEFAULT_MODELS))
    @slow
    @require_tf
lewtun's avatar
lewtun committed
473
    @require_vision
474
    def test_tensorflow_export(self, test_name, name, model_name, feature, onnx_config_class_constructor):
475
        self._onnx_export(test_name, name, model_name, feature, onnx_config_class_constructor, framework="tf")
476

477
    @parameterized.expand(_get_models_to_test(TENSORFLOW_EXPORT_WITH_PAST_MODELS), skip_on_empty=True)
478
479
480
    @slow
    @require_tf
    def test_tensorflow_export_with_past(self, test_name, name, model_name, feature, onnx_config_class_constructor):
481
        self._onnx_export(test_name, name, model_name, feature, onnx_config_class_constructor, framework="tf")
482

483
    @parameterized.expand(_get_models_to_test(TENSORFLOW_EXPORT_SEQ2SEQ_WITH_PAST_MODELS), skip_on_empty=True)
484
485
486
487
488
    @slow
    @require_tf
    def test_tensorflow_export_seq2seq_with_past(
        self, test_name, name, model_name, feature, onnx_config_class_constructor
    ):
489
        self._onnx_export(test_name, name, model_name, feature, onnx_config_class_constructor, framework="tf")
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526


class StableDropoutTestCase(TestCase):
    """Tests export of StableDropout module."""

    @require_torch
    @pytest.mark.filterwarnings("ignore:.*Dropout.*:UserWarning:torch.onnx.*")  # torch.onnx is spammy.
    def test_training(self):
        """Tests export of StableDropout in training mode."""
        devnull = open(os.devnull, "wb")
        # drop_prob must be > 0 for the test to be meaningful
        sd = modeling_deberta.StableDropout(0.1)
        # Avoid warnings in training mode
        do_constant_folding = False
        # Dropout is a no-op in inference mode
        training = torch.onnx.TrainingMode.PRESERVE
        input = (torch.randn(2, 2),)

        torch.onnx.export(
            sd,
            input,
            devnull,
            opset_version=12,  # Minimum supported
            do_constant_folding=do_constant_folding,
            training=training,
        )

        # Expected to fail with opset_version < 12
        with self.assertRaises(Exception):
            torch.onnx.export(
                sd,
                input,
                devnull,
                opset_version=11,
                do_constant_folding=do_constant_folding,
                training=training,
            )