test_beam_search.py 24.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# coding=utf-8
# Copyright 2020 The HuggingFace Team Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a clone of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

from transformers import is_torch_available
from transformers.testing_utils import require_torch, torch_device

22
from ..test_modeling_common import floats_tensor, ids_tensor
23
24
25
26
27


if is_torch_available():
    import torch

28
29
30
31
32
33
34
    from transformers.generation import (
        BeamHypotheses,
        BeamSearchScorer,
        ConstrainedBeamSearchScorer,
        DisjunctiveConstraint,
        PhrasalConstraint,
    )
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61


class BeamSearchTester:
    def __init__(
        self,
        parent,
        batch_size=3,
        sequence_length=10,
        vocab_size=99,
        pad_token_id=0,
        max_length=20,
        num_beams=4,
        length_penalty=2.0,
        do_early_stopping=True,
        num_beam_hyps_to_keep=2,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.sequence_length = sequence_length
        self.vocab_size = vocab_size
        self.pad_token_id = pad_token_id
        self.max_length = max_length
        self.num_beams = num_beams
        self.length_penalty = length_penalty
        self.do_early_stopping = do_early_stopping
        self.num_beam_hyps_to_keep = num_beam_hyps_to_keep

fzyzcjy's avatar
fzyzcjy committed
62
        # cannot be randomly generated
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
        self.eos_token_id = vocab_size + 1

    def prepare_beam_scorer(self, **kwargs):
        return BeamSearchScorer(
            batch_size=kwargs.get("batch_size", self.batch_size),
            num_beams=kwargs.get("num_beams", self.num_beams),
            device=torch_device,
            length_penalty=kwargs.get("length_penalty", self.length_penalty),
            do_early_stopping=kwargs.get("do_early_stopping", self.do_early_stopping),
            num_beam_hyps_to_keep=kwargs.get("num_beam_hyps_to_keep", self.num_beam_hyps_to_keep),
        )

    def prepare_inputs(self):
        input_ids = ids_tensor((self.batch_size * self.num_beams, self.sequence_length), self.vocab_size)
        next_tokens = ids_tensor((self.batch_size, 2 * self.num_beams), self.vocab_size).to(torch_device)
        next_indices = ids_tensor((self.batch_size, 2 * self.num_beams), self.num_beams).to(torch_device)
        next_scores, _ = (-floats_tensor((self.batch_size, 2 * self.num_beams)).to(torch_device)).sort(descending=True)
        return (input_ids, next_tokens, next_indices, next_scores)

    def check_beam_hypotheses(self, input_ids, *args):
        # check that correct number of beam hypotheses is set in beam scorer
        beam_scorer = self.prepare_beam_scorer(do_early_stopping=True)
        beam_hyp = beam_scorer._beam_hyps[0]

        self.parent.assertEqual(len(beam_scorer._beam_hyps), self.batch_size)

        # check correct type
        self.parent.assertTrue(isinstance(beam_hyp, BeamHypotheses))

        # check that num_beams is correctly set
        self.parent.assertEqual(beam_hyp.num_beams, self.num_beams)

        # check for early stopping deactivated
        for beam_idx in range(self.num_beams):
            beam_hyp.add(input_ids[beam_idx], -10.0)

        # if early stopping True -> score does not matter
        self.parent.assertTrue(beam_hyp.is_done(-10.0, 5))

        # re-init
        beam_scorer = self.prepare_beam_scorer(do_early_stopping=False)
        beam_hyp = beam_scorer._beam_hyps[0]

        # add `num_beams + 1` beams to change `worst_score`
        for beam_idx in range(self.num_beams + 1):
            beam_hyp.add(input_ids[beam_idx], -10.0 + float(beam_idx))

        # -10.0 is removed => -9.0 is worst score
111
        self.parent.assertAlmostEqual(beam_hyp.worst_score, -9.0 / (self.sequence_length**beam_hyp.length_penalty))
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

        # -5.0 is better than worst score => should not be finished
        self.parent.assertFalse(beam_hyp.is_done(-5.0, self.sequence_length))

        # -20.0 is worse than worst score => should be finished
        self.parent.assertTrue(beam_hyp.is_done(-20.0, self.sequence_length))

    def check_beam_scorer_update(self, input_ids, next_tokens, next_indices, next_scores):
        # check too many eos tokens
        beam_scorer = self.prepare_beam_scorer()

        tokens = next_tokens.clone()
        tokens[0, :] = self.eos_token_id

        with self.parent.assertRaises(ValueError):
            beam_scorer.process(input_ids, next_scores, tokens, next_indices, eos_token_id=self.eos_token_id)

        # check all batches are done
        beam_scorer = self.prepare_beam_scorer()

        tokens = next_tokens.clone()
        tokens[:, : self.num_beams] = self.eos_token_id
134
135
136
137
138
        beam_indices = torch.zeros_like(input_ids) + torch.arange(input_ids.shape[-1], device=input_ids.device)
        beam_indices = tuple(tuple(b) for b in beam_indices)
        beam_scorer.process(
            input_ids, next_scores, tokens, next_indices, eos_token_id=self.eos_token_id, beam_indices=beam_indices
        )
139
140
141
142
143
144
145
146
147
        # beam scorer should be done
        self.parent.assertTrue(beam_scorer.is_done)

        # check
        beam_scorer = self.prepare_beam_scorer()

        tokens = next_tokens.clone()
        tokens[:, 1] = self.eos_token_id
        beam_outputs = beam_scorer.process(
148
            input_ids, next_scores, tokens, next_indices, eos_token_id=self.eos_token_id, beam_indices=beam_indices
149
150
151
152
153
154
155
156
157
158
159
160
161
162
        )
        output_scores = beam_outputs["next_beam_scores"]
        output_tokens = beam_outputs["next_beam_tokens"]
        output_indices = beam_outputs["next_beam_indices"]

        def cut_expected_tensor(tensor):
            return torch.cat([tensor[:, :1], tensor[:, 2 : self.num_beams + 1]], dim=1).flatten()

        # check all outptus
        # cut out id of eos token and take best `num_beams` outputs
        expected_output_tokens = cut_expected_tensor(tokens)
        expected_output_scores = cut_expected_tensor(next_scores)

        # add num_beams * batch_idx
163
164
165
        offset = torch.div(
            torch.arange(self.num_beams * self.batch_size, device=torch_device), self.num_beams, rounding_mode="floor"
        )
166
        expected_output_indices = cut_expected_tensor(next_indices) + offset * self.num_beams
167
168
169
170
171
172

        self.parent.assertListEqual(expected_output_tokens.tolist(), output_tokens.tolist())
        self.parent.assertListEqual(expected_output_indices.tolist(), output_indices.tolist())
        self.parent.assertTrue(torch.allclose(expected_output_scores, output_scores, atol=1e-3))

        # make sure ids of eos token are correctly saved in beam_hyps of beam scorer
173
        expected_beam_indices = list(range(10))
174
175
176
        for batch_idx in range(self.batch_size):
            correct_idx = batch_idx * self.num_beams + next_indices[batch_idx, 1]
            self.parent.assertListEqual(
177
178
179
                input_ids[correct_idx].tolist(), beam_scorer._beam_hyps[batch_idx].beams[0][1].tolist()
            )
            self.parent.assertListEqual(
180
                expected_beam_indices + [correct_idx],
181
                torch.tensor(beam_scorer._beam_hyps[batch_idx].beams[0][2]).tolist(),
182
183
184
185
186
            )

    def check_beam_scores_finalize(self, input_ids, next_tokens, next_indices, next_scores):
        # max_length should be only one more than current input_ids to check that eos is correctly appended
        max_length = self.sequence_length + 1
187
        beam_scorer = self.prepare_beam_scorer(num_beam_hyps_to_keep=1, length_penalty=1.0, do_early_stopping=False)
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204

        # update beams and append to input_ids
        tokens = next_tokens.clone()
        # first batch, first output has to finish with eos token id since scores are correctly sorted
        tokens[0, 0] = self.eos_token_id
        # make sure corresponding score is as good as possible to surely be picked first
        next_scores[0, 0] = 0.0
        beam_outputs = beam_scorer.process(
            input_ids, next_scores, tokens, next_indices, eos_token_id=self.eos_token_id
        )
        output_scores = beam_outputs["next_beam_scores"]
        output_tokens = beam_outputs["next_beam_tokens"]
        output_indices = beam_outputs["next_beam_indices"]

        input_ids = torch.cat([input_ids[output_indices, :], output_tokens.unsqueeze(-1)], dim=-1)

        # finalize
205
206
        beam_indices = torch.zeros_like(input_ids) + torch.arange(input_ids.shape[-1], device=input_ids.device)
        beam_indices = tuple(tuple(b) for b in beam_indices)
207
        sequence_output = beam_scorer.finalize(
208
209
210
211
212
213
            input_ids,
            output_scores,
            output_tokens,
            output_indices,
            pad_token_id=self.pad_token_id,
            eos_token_id=self.eos_token_id,
214
            max_length=max_length,
215
            beam_indices=beam_indices,
216
        )
217
218
219
220

        sequences = sequence_output["sequences"]
        sequence_scores = sequence_output["sequence_scores"]

221
        # since `num_beam_hyps_to_keep` = 1 => only return `batch_size` x `max_length`
222
223
224
225
226
        self.parent.assertListEqual(list(sequences.shape), [self.batch_size, max_length])
        self.parent.assertListEqual(list(sequence_scores.shape), [self.batch_size])

        # check sequence_scores
        self.parent.assertFalse((sequence_scores > 0).any().item())
227
228

        # first batch has to finish with eos_token
229
        self.parent.assertEqual(sequences[0, -1].item(), self.eos_token_id)
230
231

        # other batches cannot finish with eos token
232
233
        self.parent.assertNotEqual(sequences[1, -1].item(), self.eos_token_id)
        self.parent.assertNotEqual(sequences[2, -1].item(), self.eos_token_id)
234
235
236

        # now test that if `num_beam_hyps_to_keep` is 3 => all beams are returned
        beam_scorer.num_beam_hyps_to_keep = self.num_beams
237
        sequence_output = beam_scorer.finalize(
238
239
240
241
242
243
            input_ids,
            output_scores,
            output_tokens,
            output_indices,
            pad_token_id=self.pad_token_id,
            eos_token_id=self.eos_token_id,
244
            max_length=max_length,
245
            beam_indices=beam_indices,
246
        )
247
248
249
250
251
        sequences = sequence_output["sequences"]
        sequence_scores = sequence_output["sequence_scores"]

        self.parent.assertListEqual(list(sequences.shape), [self.num_beams * self.batch_size, max_length])
        self.parent.assertListEqual(list(sequence_scores.shape), [self.num_beams * self.batch_size])
252
253


254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
class ConstrainedBeamSearchTester:
    def __init__(
        self,
        parent,
        constraints=None,
        batch_size=3,
        sequence_length=10,
        vocab_size=99,
        pad_token_id=0,
        max_length=20,
        num_beams=4,
        length_penalty=2.0,
        do_early_stopping=True,
        num_beam_hyps_to_keep=2,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.sequence_length = sequence_length
        self.vocab_size = vocab_size
        self.pad_token_id = pad_token_id
        self.max_length = max_length
        self.num_beams = num_beams
        self.length_penalty = length_penalty
        self.do_early_stopping = do_early_stopping
        self.num_beam_hyps_to_keep = num_beam_hyps_to_keep

        if constraints is None:
281
282
283
284
            force_tokens = torch.randint(10, 50, (1, 2))[0].tolist()
            disjunctive_tokens = torch.randint(10, 50, (2, 2)).tolist()

            constraints = [PhrasalConstraint(force_tokens), DisjunctiveConstraint(disjunctive_tokens)]
285
            self.constraints = constraints
fzyzcjy's avatar
fzyzcjy committed
286
        # cannot be randomly generated
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
        self.eos_token_id = vocab_size + 1

    def prepare_constrained_beam_scorer(self, **kwargs):
        return ConstrainedBeamSearchScorer(
            constraints=kwargs.get("constraints", self.constraints),
            batch_size=kwargs.get("batch_size", self.batch_size),
            num_beams=kwargs.get("num_beams", self.num_beams),
            device=torch_device,
            length_penalty=kwargs.get("length_penalty", self.length_penalty),
            do_early_stopping=kwargs.get("do_early_stopping", self.do_early_stopping),
            num_beam_hyps_to_keep=kwargs.get("num_beam_hyps_to_keep", self.num_beam_hyps_to_keep),
        )

    def prepare_inputs(self):
        input_ids = ids_tensor((self.batch_size * self.num_beams, self.sequence_length), self.vocab_size)
        next_tokens = ids_tensor((self.batch_size, 2 * self.num_beams), self.vocab_size).to(torch_device)
        next_indices = ids_tensor((self.batch_size, 2 * self.num_beams), self.num_beams).to(torch_device)
        next_scores, _ = (-floats_tensor((self.batch_size, 2 * self.num_beams)).to(torch_device)).sort(descending=True)
        scores_for_all_vocab, _ = (
            -floats_tensor((self.batch_size * self.num_beams, self.vocab_size)).to(torch_device)
        ).sort(descending=True)
        return (input_ids, next_tokens, next_indices, next_scores, scores_for_all_vocab)

    def check_beam_hypotheses(self, input_ids, *args):
        # check that correct number of beam hypotheses is set in beam scorer
        constrained_beam_scorer = self.prepare_constrained_beam_scorer(do_early_stopping=True)
        beam_hyp = constrained_beam_scorer._beam_hyps[0]

        self.parent.assertEqual(len(constrained_beam_scorer._beam_hyps), self.batch_size)

        # check correct type
        self.parent.assertTrue(isinstance(beam_hyp, BeamHypotheses))

        # check that num_beams is correctly set
        self.parent.assertEqual(beam_hyp.num_beams, self.num_beams)

        # check for early stopping deactivated
        for beam_idx in range(self.num_beams):
            beam_hyp.add(input_ids[beam_idx], -10.0)

        # if early stopping True -> score does not matter
        self.parent.assertTrue(beam_hyp.is_done(-10.0, 5))

        # re-init
        constrained_beam_scorer = self.prepare_constrained_beam_scorer(do_early_stopping=False)
        beam_hyp = constrained_beam_scorer._beam_hyps[0]

        # add `num_beams + 1` beams to change `worst_score`
        for beam_idx in range(self.num_beams + 1):
            beam_hyp.add(input_ids[beam_idx], -10.0 + float(beam_idx))

        # -10.0 is removed => -9.0 is worst score
Sylvain Gugger's avatar
Sylvain Gugger committed
339
        self.parent.assertAlmostEqual(beam_hyp.worst_score, -9.0 / (self.sequence_length**beam_hyp.length_penalty))
340
341
342
343
344
345
346
347
348
349
350
351

        # -5.0 is better than worst score => should not be finished
        self.parent.assertFalse(beam_hyp.is_done(-5.0, self.sequence_length))

        # -20.0 is worse than worst score => should be finished
        self.parent.assertTrue(beam_hyp.is_done(-20.0, self.sequence_length))

    def check_constrained_beam_scorer_update(
        self, input_ids, next_tokens, next_indices, next_scores, scores_for_all_vocab
    ):
        # check too many eos tokens
        constrained_beam_scorer = self.prepare_constrained_beam_scorer()
352
353
354
355
356
357
358
        stacked_token_ids = []
        for constraint in self.constraints:
            token_ids = constraint.token_ids
            token_ids = token_ids[0] if isinstance(token_ids[0], list) else token_ids
            stacked_token_ids = stacked_token_ids + token_ids

        fulfilling_sequence = torch.LongTensor(stacked_token_ids)
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
        fulfill_len = fulfilling_sequence.size(0)
        input_ids[:, :fulfill_len] = fulfilling_sequence

        tokens = next_tokens.clone()
        tokens[0, :] = self.eos_token_id

        with self.parent.assertRaises(ValueError):
            constrained_beam_scorer.process(
                input_ids, next_scores, tokens, next_indices, scores_for_all_vocab, eos_token_id=self.eos_token_id
            )

        # check all batches are done
        constrained_beam_scorer = self.prepare_constrained_beam_scorer()

        tokens = next_tokens.clone()
        tokens[:, : self.num_beams] = self.eos_token_id
        constrained_beam_scorer.process(
            input_ids, next_scores, tokens, next_indices, scores_for_all_vocab, eos_token_id=self.eos_token_id
        )
        # beam scorer should be done
        self.parent.assertTrue(constrained_beam_scorer.is_done)

        # check
        constrained_beam_scorer = self.prepare_constrained_beam_scorer()

        tokens = next_tokens.clone()
        tokens[:, 1] = self.eos_token_id
        beam_outputs = constrained_beam_scorer.process(
            input_ids, next_scores, tokens, next_indices, scores_for_all_vocab, eos_token_id=self.eos_token_id
        )
        output_scores = beam_outputs["next_beam_scores"]
        output_tokens = beam_outputs["next_beam_tokens"]
        output_indices = beam_outputs["next_beam_indices"]

        def cut_expected_tensor(tensor):
            return torch.cat([tensor[:, :1], tensor[:, 2 : self.num_beams + 1]], dim=1).flatten()

        # check all outptus
        # cut out id of eos token and take best `num_beams` outputs
        expected_output_tokens = cut_expected_tensor(tokens)
        expected_output_scores = cut_expected_tensor(next_scores)

        # add num_beams * batch_idx
402
403
404
        offset = torch.div(
            torch.arange(self.num_beams * self.batch_size, device=torch_device), self.num_beams, rounding_mode="floor"
        )
405
        expected_output_indices = cut_expected_tensor(next_indices) + offset * self.num_beams
406
407
408
409
410
411
412
413
414

        self.parent.assertListEqual(expected_output_tokens.tolist(), output_tokens.tolist())
        self.parent.assertListEqual(expected_output_indices.tolist(), output_indices.tolist())
        self.parent.assertTrue(torch.allclose(expected_output_scores, output_scores, atol=1e-3))

        # make sure ids of eos token are correctly saved in beam_hyps of beam scorer
        for batch_idx in range(self.batch_size):
            correct_idx = batch_idx * self.num_beams + next_indices[batch_idx, 1]
            self.parent.assertListEqual(
415
                input_ids[correct_idx].tolist(), constrained_beam_scorer._beam_hyps[batch_idx].beams[0][1].tolist()
416
417
418
419
420
421
422
423
424
            )

    def check_constrained_beam_scorer_finalize(
        self, input_ids, next_tokens, next_indices, next_scores, scores_for_all_vocab
    ):
        # max_length should be only one more than current input_ids to check that eos is correctly appended
        max_length = self.sequence_length + 1

        # for testing finalize, we do want to have fulfilled constraints
425
426
427
428
429
430
431
432
        stacked_token_ids = []
        for constraint in self.constraints:
            token_ids = constraint.token_ids
            token_ids = token_ids[0] if isinstance(token_ids[0], list) else token_ids
            stacked_token_ids = stacked_token_ids + token_ids

        fulfilling_sequence = torch.LongTensor(stacked_token_ids)

433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
        fulfill_len = fulfilling_sequence.size(0)
        input_ids[:, :fulfill_len] = fulfilling_sequence

        constrained_beam_scorer = self.prepare_constrained_beam_scorer(
            num_beam_hyps_to_keep=1, length_penalty=1.0, do_early_stopping=False
        )

        constraints = constrained_beam_scorer.constraints
        # update beams and append to input_ids
        tokens = next_tokens.clone()
        # first batch, first output has to finish with eos token id since scores are correctly sorted
        tokens[0, 0] = self.eos_token_id
        # make sure corresponding score is as good as possible to surely be picked first
        next_scores[0, 0] = 0.0

        beam_outputs = constrained_beam_scorer.process(
            input_ids, next_scores, tokens, next_indices, scores_for_all_vocab, eos_token_id=self.eos_token_id
        )
        output_scores = beam_outputs["next_beam_scores"]
        output_tokens = beam_outputs["next_beam_tokens"]
        output_indices = beam_outputs["next_beam_indices"]
        input_ids = torch.cat([input_ids[output_indices, :], output_tokens.unsqueeze(-1)], dim=-1)

        # finalize
        sequence_output = constrained_beam_scorer.finalize(
            input_ids,
            output_scores,
            output_tokens,
            output_indices,
            pad_token_id=self.pad_token_id,
            eos_token_id=self.eos_token_id,
            max_length=max_length,
        )

        sequences = sequence_output["sequences"]
        sequence_scores = sequence_output["sequence_scores"]

        # since `num_beam_hyps_to_keep` = 1 => only return `batch_size` x `max_length`
        self.parent.assertListEqual(list(sequences.shape), [self.batch_size, max_length])
        self.parent.assertListEqual(list(sequence_scores.shape), [self.batch_size])

        # check sequence_scores
        self.parent.assertFalse((sequence_scores > 0).any().item())

        # first batch has to finish with eos_token
        self.parent.assertEqual(sequences[0, -1].item(), self.eos_token_id)

        # other batches cannot finish with eos token
        self.parent.assertNotEqual(sequences[1, -1].item(), self.eos_token_id)
        self.parent.assertNotEqual(sequences[2, -1].item(), self.eos_token_id)

        # test that the constraint is indeed fulfilled
Sylvain Gugger's avatar
Sylvain Gugger committed
485
        for output, constraint in [(s, c) for s in sequences for c in constraints]:
486
487
488
489
490
491
492
493
494
495
            forced_token_ids = constraint.token_ids
            if isinstance(forced_token_ids[0], list):
                # disjunctive case
                flag = False
                for token_ids in forced_token_ids:
                    if self._check_sequence_inside_sequence(output, token_ids):
                        flag = True
                        break
                self.parent.assertEqual(flag, True)
            else:
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
                self.parent.assertEqual(self._check_sequence_inside_sequence(output, forced_token_ids), True)

        # now test that if `num_beam_hyps_to_keep` is 3 => all beams are returned

        # constrained_beam_scorer.num_beam_hyps_to_keep = self.num_beams
        constrained_beam_scorer = self.prepare_constrained_beam_scorer(
            num_beam_hyps_to_keep=self.num_beams, length_penalty=1.0, do_early_stopping=False
        )

        sequence_output = constrained_beam_scorer.finalize(
            input_ids,
            output_scores,
            output_tokens,
            output_indices,
            pad_token_id=self.pad_token_id,
            eos_token_id=self.eos_token_id,
            max_length=max_length,
        )
        sequences = sequence_output["sequences"]
        sequence_scores = sequence_output["sequence_scores"]

        self.parent.assertListEqual(list(sequences.shape), [self.num_beams * self.batch_size, max_length])
        self.parent.assertListEqual(list(sequence_scores.shape), [self.num_beams * self.batch_size])

    def _check_sequence_inside_sequence(self, tensor_1, tensor_2):
521
        # check if tensor_1 inside tensor_2 or tensor_2 inside tensor_1.
522
523
        # set to same device. we don't care what device.

524
525
526
527
528
529
        if not isinstance(tensor_1, list):
            tensor_1 = tensor_1.cpu().tolist()
        if not isinstance(tensor_2, list):
            tensor_2 = tensor_2.cpu().tolist()

        in_order = len(tensor_1) <= len(tensor_2)
530
531
532
533
        longer = tensor_2 if in_order else tensor_1
        shorter = tensor_1 if in_order else tensor_2

        flag = False
534
535
        chunk_size = len(shorter)
        for chunk_idx in range(len(longer) - chunk_size + 1):
536
            subseq = longer[chunk_idx : chunk_idx + chunk_size]
537
            if subseq == shorter:
538
539
540
541
542
543
                flag = True
                break

        return flag


544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
@require_torch
class BeamSearchTest(unittest.TestCase):
    def setUp(self):
        self.beam_search_tester = BeamSearchTester(self)

    def test_beam_hypotheses(self):
        inputs = self.beam_search_tester.prepare_inputs()
        self.beam_search_tester.check_beam_hypotheses(*inputs)

    def test_beam_scorer_update(self):
        inputs = self.beam_search_tester.prepare_inputs()
        self.beam_search_tester.check_beam_scorer_update(*inputs)

    def test_beam_scorer_finalize(self):
        inputs = self.beam_search_tester.prepare_inputs()
        self.beam_search_tester.check_beam_scores_finalize(*inputs)
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577


@require_torch
class ConstrainedBeamSearchTest(unittest.TestCase):
    def setUp(self):
        self.constrained_beam_search_tester = ConstrainedBeamSearchTester(self)

    def test_constrained_beam_hypotheses(self):
        inputs = self.constrained_beam_search_tester.prepare_inputs()
        self.constrained_beam_search_tester.check_beam_hypotheses(*inputs)

    def test_constrained_beam_scorer_update(self):
        inputs = self.constrained_beam_search_tester.prepare_inputs()
        self.constrained_beam_search_tester.check_constrained_beam_scorer_update(*inputs)

    def test_constrained_beam_scorer_finalize(self):
        inputs = self.constrained_beam_search_tester.prepare_inputs()
        self.constrained_beam_search_tester.check_constrained_beam_scorer_finalize(*inputs)