"tests/modeling_tf_gpt2_test.py" did not exist on "45dc04f33d97449d2cc825cb53635407512cf926"
test_beam_search.py 24.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# coding=utf-8
# Copyright 2020 The HuggingFace Team Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a clone of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

from transformers import is_torch_available
from transformers.testing_utils import require_torch, torch_device

22
from ..test_modeling_common import floats_tensor, ids_tensor
23
24
25
26
27


if is_torch_available():
    import torch

28
29
30
31
32
33
34
    from transformers.generation import (
        BeamHypotheses,
        BeamSearchScorer,
        ConstrainedBeamSearchScorer,
        DisjunctiveConstraint,
        PhrasalConstraint,
    )
35
    from transformers.pytorch_utils import torch_int_div
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62


class BeamSearchTester:
    def __init__(
        self,
        parent,
        batch_size=3,
        sequence_length=10,
        vocab_size=99,
        pad_token_id=0,
        max_length=20,
        num_beams=4,
        length_penalty=2.0,
        do_early_stopping=True,
        num_beam_hyps_to_keep=2,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.sequence_length = sequence_length
        self.vocab_size = vocab_size
        self.pad_token_id = pad_token_id
        self.max_length = max_length
        self.num_beams = num_beams
        self.length_penalty = length_penalty
        self.do_early_stopping = do_early_stopping
        self.num_beam_hyps_to_keep = num_beam_hyps_to_keep

fzyzcjy's avatar
fzyzcjy committed
63
        # cannot be randomly generated
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
        self.eos_token_id = vocab_size + 1

    def prepare_beam_scorer(self, **kwargs):
        return BeamSearchScorer(
            batch_size=kwargs.get("batch_size", self.batch_size),
            num_beams=kwargs.get("num_beams", self.num_beams),
            device=torch_device,
            length_penalty=kwargs.get("length_penalty", self.length_penalty),
            do_early_stopping=kwargs.get("do_early_stopping", self.do_early_stopping),
            num_beam_hyps_to_keep=kwargs.get("num_beam_hyps_to_keep", self.num_beam_hyps_to_keep),
        )

    def prepare_inputs(self):
        input_ids = ids_tensor((self.batch_size * self.num_beams, self.sequence_length), self.vocab_size)
        next_tokens = ids_tensor((self.batch_size, 2 * self.num_beams), self.vocab_size).to(torch_device)
        next_indices = ids_tensor((self.batch_size, 2 * self.num_beams), self.num_beams).to(torch_device)
        next_scores, _ = (-floats_tensor((self.batch_size, 2 * self.num_beams)).to(torch_device)).sort(descending=True)
        return (input_ids, next_tokens, next_indices, next_scores)

    def check_beam_hypotheses(self, input_ids, *args):
        # check that correct number of beam hypotheses is set in beam scorer
        beam_scorer = self.prepare_beam_scorer(do_early_stopping=True)
        beam_hyp = beam_scorer._beam_hyps[0]

        self.parent.assertEqual(len(beam_scorer._beam_hyps), self.batch_size)

        # check correct type
        self.parent.assertTrue(isinstance(beam_hyp, BeamHypotheses))

        # check that num_beams is correctly set
        self.parent.assertEqual(beam_hyp.num_beams, self.num_beams)

        # check for early stopping deactivated
        for beam_idx in range(self.num_beams):
            beam_hyp.add(input_ids[beam_idx], -10.0)

        # if early stopping True -> score does not matter
        self.parent.assertTrue(beam_hyp.is_done(-10.0, 5))

        # re-init
        beam_scorer = self.prepare_beam_scorer(do_early_stopping=False)
        beam_hyp = beam_scorer._beam_hyps[0]

        # add `num_beams + 1` beams to change `worst_score`
        for beam_idx in range(self.num_beams + 1):
            beam_hyp.add(input_ids[beam_idx], -10.0 + float(beam_idx))

        # -10.0 is removed => -9.0 is worst score
112
        self.parent.assertAlmostEqual(beam_hyp.worst_score, -9.0 / (self.sequence_length**beam_hyp.length_penalty))
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

        # -5.0 is better than worst score => should not be finished
        self.parent.assertFalse(beam_hyp.is_done(-5.0, self.sequence_length))

        # -20.0 is worse than worst score => should be finished
        self.parent.assertTrue(beam_hyp.is_done(-20.0, self.sequence_length))

    def check_beam_scorer_update(self, input_ids, next_tokens, next_indices, next_scores):
        # check too many eos tokens
        beam_scorer = self.prepare_beam_scorer()

        tokens = next_tokens.clone()
        tokens[0, :] = self.eos_token_id

        with self.parent.assertRaises(ValueError):
            beam_scorer.process(input_ids, next_scores, tokens, next_indices, eos_token_id=self.eos_token_id)

        # check all batches are done
        beam_scorer = self.prepare_beam_scorer()

        tokens = next_tokens.clone()
        tokens[:, : self.num_beams] = self.eos_token_id
135
136
137
138
139
        beam_indices = torch.zeros_like(input_ids) + torch.arange(input_ids.shape[-1], device=input_ids.device)
        beam_indices = tuple(tuple(b) for b in beam_indices)
        beam_scorer.process(
            input_ids, next_scores, tokens, next_indices, eos_token_id=self.eos_token_id, beam_indices=beam_indices
        )
140
141
142
143
144
145
146
147
148
        # beam scorer should be done
        self.parent.assertTrue(beam_scorer.is_done)

        # check
        beam_scorer = self.prepare_beam_scorer()

        tokens = next_tokens.clone()
        tokens[:, 1] = self.eos_token_id
        beam_outputs = beam_scorer.process(
149
            input_ids, next_scores, tokens, next_indices, eos_token_id=self.eos_token_id, beam_indices=beam_indices
150
151
152
153
154
155
156
157
158
159
160
161
162
163
        )
        output_scores = beam_outputs["next_beam_scores"]
        output_tokens = beam_outputs["next_beam_tokens"]
        output_indices = beam_outputs["next_beam_indices"]

        def cut_expected_tensor(tensor):
            return torch.cat([tensor[:, :1], tensor[:, 2 : self.num_beams + 1]], dim=1).flatten()

        # check all outptus
        # cut out id of eos token and take best `num_beams` outputs
        expected_output_tokens = cut_expected_tensor(tokens)
        expected_output_scores = cut_expected_tensor(next_scores)

        # add num_beams * batch_idx
164
165
        offset = torch_int_div(torch.arange(self.num_beams * self.batch_size, device=torch_device), self.num_beams)
        expected_output_indices = cut_expected_tensor(next_indices) + offset * self.num_beams
166
167
168
169
170
171

        self.parent.assertListEqual(expected_output_tokens.tolist(), output_tokens.tolist())
        self.parent.assertListEqual(expected_output_indices.tolist(), output_indices.tolist())
        self.parent.assertTrue(torch.allclose(expected_output_scores, output_scores, atol=1e-3))

        # make sure ids of eos token are correctly saved in beam_hyps of beam scorer
172
        expected_beam_indices = list(range(10))
173
174
175
        for batch_idx in range(self.batch_size):
            correct_idx = batch_idx * self.num_beams + next_indices[batch_idx, 1]
            self.parent.assertListEqual(
176
177
178
                input_ids[correct_idx].tolist(), beam_scorer._beam_hyps[batch_idx].beams[0][1].tolist()
            )
            self.parent.assertListEqual(
179
                expected_beam_indices + [correct_idx],
180
                torch.tensor(beam_scorer._beam_hyps[batch_idx].beams[0][2]).tolist(),
181
182
183
184
185
            )

    def check_beam_scores_finalize(self, input_ids, next_tokens, next_indices, next_scores):
        # max_length should be only one more than current input_ids to check that eos is correctly appended
        max_length = self.sequence_length + 1
186
        beam_scorer = self.prepare_beam_scorer(num_beam_hyps_to_keep=1, length_penalty=1.0, do_early_stopping=False)
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203

        # update beams and append to input_ids
        tokens = next_tokens.clone()
        # first batch, first output has to finish with eos token id since scores are correctly sorted
        tokens[0, 0] = self.eos_token_id
        # make sure corresponding score is as good as possible to surely be picked first
        next_scores[0, 0] = 0.0
        beam_outputs = beam_scorer.process(
            input_ids, next_scores, tokens, next_indices, eos_token_id=self.eos_token_id
        )
        output_scores = beam_outputs["next_beam_scores"]
        output_tokens = beam_outputs["next_beam_tokens"]
        output_indices = beam_outputs["next_beam_indices"]

        input_ids = torch.cat([input_ids[output_indices, :], output_tokens.unsqueeze(-1)], dim=-1)

        # finalize
204
205
        beam_indices = torch.zeros_like(input_ids) + torch.arange(input_ids.shape[-1], device=input_ids.device)
        beam_indices = tuple(tuple(b) for b in beam_indices)
206
        sequence_output = beam_scorer.finalize(
207
208
209
210
211
212
            input_ids,
            output_scores,
            output_tokens,
            output_indices,
            pad_token_id=self.pad_token_id,
            eos_token_id=self.eos_token_id,
213
            max_length=max_length,
214
            beam_indices=beam_indices,
215
        )
216
217
218
219

        sequences = sequence_output["sequences"]
        sequence_scores = sequence_output["sequence_scores"]

220
        # since `num_beam_hyps_to_keep` = 1 => only return `batch_size` x `max_length`
221
222
223
224
225
        self.parent.assertListEqual(list(sequences.shape), [self.batch_size, max_length])
        self.parent.assertListEqual(list(sequence_scores.shape), [self.batch_size])

        # check sequence_scores
        self.parent.assertFalse((sequence_scores > 0).any().item())
226
227

        # first batch has to finish with eos_token
228
        self.parent.assertEqual(sequences[0, -1].item(), self.eos_token_id)
229
230

        # other batches cannot finish with eos token
231
232
        self.parent.assertNotEqual(sequences[1, -1].item(), self.eos_token_id)
        self.parent.assertNotEqual(sequences[2, -1].item(), self.eos_token_id)
233
234
235

        # now test that if `num_beam_hyps_to_keep` is 3 => all beams are returned
        beam_scorer.num_beam_hyps_to_keep = self.num_beams
236
        sequence_output = beam_scorer.finalize(
237
238
239
240
241
242
            input_ids,
            output_scores,
            output_tokens,
            output_indices,
            pad_token_id=self.pad_token_id,
            eos_token_id=self.eos_token_id,
243
            max_length=max_length,
244
            beam_indices=beam_indices,
245
        )
246
247
248
249
250
        sequences = sequence_output["sequences"]
        sequence_scores = sequence_output["sequence_scores"]

        self.parent.assertListEqual(list(sequences.shape), [self.num_beams * self.batch_size, max_length])
        self.parent.assertListEqual(list(sequence_scores.shape), [self.num_beams * self.batch_size])
251
252


253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
class ConstrainedBeamSearchTester:
    def __init__(
        self,
        parent,
        constraints=None,
        batch_size=3,
        sequence_length=10,
        vocab_size=99,
        pad_token_id=0,
        max_length=20,
        num_beams=4,
        length_penalty=2.0,
        do_early_stopping=True,
        num_beam_hyps_to_keep=2,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.sequence_length = sequence_length
        self.vocab_size = vocab_size
        self.pad_token_id = pad_token_id
        self.max_length = max_length
        self.num_beams = num_beams
        self.length_penalty = length_penalty
        self.do_early_stopping = do_early_stopping
        self.num_beam_hyps_to_keep = num_beam_hyps_to_keep

        if constraints is None:
280
281
282
283
            force_tokens = torch.randint(10, 50, (1, 2))[0].tolist()
            disjunctive_tokens = torch.randint(10, 50, (2, 2)).tolist()

            constraints = [PhrasalConstraint(force_tokens), DisjunctiveConstraint(disjunctive_tokens)]
284
            self.constraints = constraints
fzyzcjy's avatar
fzyzcjy committed
285
        # cannot be randomly generated
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
        self.eos_token_id = vocab_size + 1

    def prepare_constrained_beam_scorer(self, **kwargs):
        return ConstrainedBeamSearchScorer(
            constraints=kwargs.get("constraints", self.constraints),
            batch_size=kwargs.get("batch_size", self.batch_size),
            num_beams=kwargs.get("num_beams", self.num_beams),
            device=torch_device,
            length_penalty=kwargs.get("length_penalty", self.length_penalty),
            do_early_stopping=kwargs.get("do_early_stopping", self.do_early_stopping),
            num_beam_hyps_to_keep=kwargs.get("num_beam_hyps_to_keep", self.num_beam_hyps_to_keep),
        )

    def prepare_inputs(self):
        input_ids = ids_tensor((self.batch_size * self.num_beams, self.sequence_length), self.vocab_size)
        next_tokens = ids_tensor((self.batch_size, 2 * self.num_beams), self.vocab_size).to(torch_device)
        next_indices = ids_tensor((self.batch_size, 2 * self.num_beams), self.num_beams).to(torch_device)
        next_scores, _ = (-floats_tensor((self.batch_size, 2 * self.num_beams)).to(torch_device)).sort(descending=True)
        scores_for_all_vocab, _ = (
            -floats_tensor((self.batch_size * self.num_beams, self.vocab_size)).to(torch_device)
        ).sort(descending=True)
        return (input_ids, next_tokens, next_indices, next_scores, scores_for_all_vocab)

    def check_beam_hypotheses(self, input_ids, *args):
        # check that correct number of beam hypotheses is set in beam scorer
        constrained_beam_scorer = self.prepare_constrained_beam_scorer(do_early_stopping=True)
        beam_hyp = constrained_beam_scorer._beam_hyps[0]

        self.parent.assertEqual(len(constrained_beam_scorer._beam_hyps), self.batch_size)

        # check correct type
        self.parent.assertTrue(isinstance(beam_hyp, BeamHypotheses))

        # check that num_beams is correctly set
        self.parent.assertEqual(beam_hyp.num_beams, self.num_beams)

        # check for early stopping deactivated
        for beam_idx in range(self.num_beams):
            beam_hyp.add(input_ids[beam_idx], -10.0)

        # if early stopping True -> score does not matter
        self.parent.assertTrue(beam_hyp.is_done(-10.0, 5))

        # re-init
        constrained_beam_scorer = self.prepare_constrained_beam_scorer(do_early_stopping=False)
        beam_hyp = constrained_beam_scorer._beam_hyps[0]

        # add `num_beams + 1` beams to change `worst_score`
        for beam_idx in range(self.num_beams + 1):
            beam_hyp.add(input_ids[beam_idx], -10.0 + float(beam_idx))

        # -10.0 is removed => -9.0 is worst score
Sylvain Gugger's avatar
Sylvain Gugger committed
338
        self.parent.assertAlmostEqual(beam_hyp.worst_score, -9.0 / (self.sequence_length**beam_hyp.length_penalty))
339
340
341
342
343
344
345
346
347
348
349
350

        # -5.0 is better than worst score => should not be finished
        self.parent.assertFalse(beam_hyp.is_done(-5.0, self.sequence_length))

        # -20.0 is worse than worst score => should be finished
        self.parent.assertTrue(beam_hyp.is_done(-20.0, self.sequence_length))

    def check_constrained_beam_scorer_update(
        self, input_ids, next_tokens, next_indices, next_scores, scores_for_all_vocab
    ):
        # check too many eos tokens
        constrained_beam_scorer = self.prepare_constrained_beam_scorer()
351
352
353
354
355
356
357
        stacked_token_ids = []
        for constraint in self.constraints:
            token_ids = constraint.token_ids
            token_ids = token_ids[0] if isinstance(token_ids[0], list) else token_ids
            stacked_token_ids = stacked_token_ids + token_ids

        fulfilling_sequence = torch.LongTensor(stacked_token_ids)
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
        fulfill_len = fulfilling_sequence.size(0)
        input_ids[:, :fulfill_len] = fulfilling_sequence

        tokens = next_tokens.clone()
        tokens[0, :] = self.eos_token_id

        with self.parent.assertRaises(ValueError):
            constrained_beam_scorer.process(
                input_ids, next_scores, tokens, next_indices, scores_for_all_vocab, eos_token_id=self.eos_token_id
            )

        # check all batches are done
        constrained_beam_scorer = self.prepare_constrained_beam_scorer()

        tokens = next_tokens.clone()
        tokens[:, : self.num_beams] = self.eos_token_id
        constrained_beam_scorer.process(
            input_ids, next_scores, tokens, next_indices, scores_for_all_vocab, eos_token_id=self.eos_token_id
        )
        # beam scorer should be done
        self.parent.assertTrue(constrained_beam_scorer.is_done)

        # check
        constrained_beam_scorer = self.prepare_constrained_beam_scorer()

        tokens = next_tokens.clone()
        tokens[:, 1] = self.eos_token_id
        beam_outputs = constrained_beam_scorer.process(
            input_ids, next_scores, tokens, next_indices, scores_for_all_vocab, eos_token_id=self.eos_token_id
        )
        output_scores = beam_outputs["next_beam_scores"]
        output_tokens = beam_outputs["next_beam_tokens"]
        output_indices = beam_outputs["next_beam_indices"]

        def cut_expected_tensor(tensor):
            return torch.cat([tensor[:, :1], tensor[:, 2 : self.num_beams + 1]], dim=1).flatten()

        # check all outptus
        # cut out id of eos token and take best `num_beams` outputs
        expected_output_tokens = cut_expected_tensor(tokens)
        expected_output_scores = cut_expected_tensor(next_scores)

        # add num_beams * batch_idx
401
402
        offset = torch_int_div(torch.arange(self.num_beams * self.batch_size, device=torch_device), self.num_beams)
        expected_output_indices = cut_expected_tensor(next_indices) + offset * self.num_beams
403
404
405
406
407
408
409
410
411

        self.parent.assertListEqual(expected_output_tokens.tolist(), output_tokens.tolist())
        self.parent.assertListEqual(expected_output_indices.tolist(), output_indices.tolist())
        self.parent.assertTrue(torch.allclose(expected_output_scores, output_scores, atol=1e-3))

        # make sure ids of eos token are correctly saved in beam_hyps of beam scorer
        for batch_idx in range(self.batch_size):
            correct_idx = batch_idx * self.num_beams + next_indices[batch_idx, 1]
            self.parent.assertListEqual(
412
                input_ids[correct_idx].tolist(), constrained_beam_scorer._beam_hyps[batch_idx].beams[0][1].tolist()
413
414
415
416
417
418
419
420
421
            )

    def check_constrained_beam_scorer_finalize(
        self, input_ids, next_tokens, next_indices, next_scores, scores_for_all_vocab
    ):
        # max_length should be only one more than current input_ids to check that eos is correctly appended
        max_length = self.sequence_length + 1

        # for testing finalize, we do want to have fulfilled constraints
422
423
424
425
426
427
428
429
        stacked_token_ids = []
        for constraint in self.constraints:
            token_ids = constraint.token_ids
            token_ids = token_ids[0] if isinstance(token_ids[0], list) else token_ids
            stacked_token_ids = stacked_token_ids + token_ids

        fulfilling_sequence = torch.LongTensor(stacked_token_ids)

430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
        fulfill_len = fulfilling_sequence.size(0)
        input_ids[:, :fulfill_len] = fulfilling_sequence

        constrained_beam_scorer = self.prepare_constrained_beam_scorer(
            num_beam_hyps_to_keep=1, length_penalty=1.0, do_early_stopping=False
        )

        constraints = constrained_beam_scorer.constraints
        # update beams and append to input_ids
        tokens = next_tokens.clone()
        # first batch, first output has to finish with eos token id since scores are correctly sorted
        tokens[0, 0] = self.eos_token_id
        # make sure corresponding score is as good as possible to surely be picked first
        next_scores[0, 0] = 0.0

        beam_outputs = constrained_beam_scorer.process(
            input_ids, next_scores, tokens, next_indices, scores_for_all_vocab, eos_token_id=self.eos_token_id
        )
        output_scores = beam_outputs["next_beam_scores"]
        output_tokens = beam_outputs["next_beam_tokens"]
        output_indices = beam_outputs["next_beam_indices"]
        input_ids = torch.cat([input_ids[output_indices, :], output_tokens.unsqueeze(-1)], dim=-1)

        # finalize
        sequence_output = constrained_beam_scorer.finalize(
            input_ids,
            output_scores,
            output_tokens,
            output_indices,
            pad_token_id=self.pad_token_id,
            eos_token_id=self.eos_token_id,
            max_length=max_length,
        )

        sequences = sequence_output["sequences"]
        sequence_scores = sequence_output["sequence_scores"]

        # since `num_beam_hyps_to_keep` = 1 => only return `batch_size` x `max_length`
        self.parent.assertListEqual(list(sequences.shape), [self.batch_size, max_length])
        self.parent.assertListEqual(list(sequence_scores.shape), [self.batch_size])

        # check sequence_scores
        self.parent.assertFalse((sequence_scores > 0).any().item())

        # first batch has to finish with eos_token
        self.parent.assertEqual(sequences[0, -1].item(), self.eos_token_id)

        # other batches cannot finish with eos token
        self.parent.assertNotEqual(sequences[1, -1].item(), self.eos_token_id)
        self.parent.assertNotEqual(sequences[2, -1].item(), self.eos_token_id)

        # test that the constraint is indeed fulfilled
Sylvain Gugger's avatar
Sylvain Gugger committed
482
        for output, constraint in [(s, c) for s in sequences for c in constraints]:
483
484
485
486
487
488
489
490
491
492
            forced_token_ids = constraint.token_ids
            if isinstance(forced_token_ids[0], list):
                # disjunctive case
                flag = False
                for token_ids in forced_token_ids:
                    if self._check_sequence_inside_sequence(output, token_ids):
                        flag = True
                        break
                self.parent.assertEqual(flag, True)
            else:
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
                self.parent.assertEqual(self._check_sequence_inside_sequence(output, forced_token_ids), True)

        # now test that if `num_beam_hyps_to_keep` is 3 => all beams are returned

        # constrained_beam_scorer.num_beam_hyps_to_keep = self.num_beams
        constrained_beam_scorer = self.prepare_constrained_beam_scorer(
            num_beam_hyps_to_keep=self.num_beams, length_penalty=1.0, do_early_stopping=False
        )

        sequence_output = constrained_beam_scorer.finalize(
            input_ids,
            output_scores,
            output_tokens,
            output_indices,
            pad_token_id=self.pad_token_id,
            eos_token_id=self.eos_token_id,
            max_length=max_length,
        )
        sequences = sequence_output["sequences"]
        sequence_scores = sequence_output["sequence_scores"]

        self.parent.assertListEqual(list(sequences.shape), [self.num_beams * self.batch_size, max_length])
        self.parent.assertListEqual(list(sequence_scores.shape), [self.num_beams * self.batch_size])

    def _check_sequence_inside_sequence(self, tensor_1, tensor_2):
518
        # check if tensor_1 inside tensor_2 or tensor_2 inside tensor_1.
519
520
        # set to same device. we don't care what device.

521
522
523
524
525
526
        if not isinstance(tensor_1, list):
            tensor_1 = tensor_1.cpu().tolist()
        if not isinstance(tensor_2, list):
            tensor_2 = tensor_2.cpu().tolist()

        in_order = len(tensor_1) <= len(tensor_2)
527
528
529
530
        longer = tensor_2 if in_order else tensor_1
        shorter = tensor_1 if in_order else tensor_2

        flag = False
531
532
        chunk_size = len(shorter)
        for chunk_idx in range(len(longer) - chunk_size + 1):
533
            subseq = longer[chunk_idx : chunk_idx + chunk_size]
534
            if subseq == shorter:
535
536
537
538
539
540
                flag = True
                break

        return flag


541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
@require_torch
class BeamSearchTest(unittest.TestCase):
    def setUp(self):
        self.beam_search_tester = BeamSearchTester(self)

    def test_beam_hypotheses(self):
        inputs = self.beam_search_tester.prepare_inputs()
        self.beam_search_tester.check_beam_hypotheses(*inputs)

    def test_beam_scorer_update(self):
        inputs = self.beam_search_tester.prepare_inputs()
        self.beam_search_tester.check_beam_scorer_update(*inputs)

    def test_beam_scorer_finalize(self):
        inputs = self.beam_search_tester.prepare_inputs()
        self.beam_search_tester.check_beam_scores_finalize(*inputs)
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574


@require_torch
class ConstrainedBeamSearchTest(unittest.TestCase):
    def setUp(self):
        self.constrained_beam_search_tester = ConstrainedBeamSearchTester(self)

    def test_constrained_beam_hypotheses(self):
        inputs = self.constrained_beam_search_tester.prepare_inputs()
        self.constrained_beam_search_tester.check_beam_hypotheses(*inputs)

    def test_constrained_beam_scorer_update(self):
        inputs = self.constrained_beam_search_tester.prepare_inputs()
        self.constrained_beam_search_tester.check_constrained_beam_scorer_update(*inputs)

    def test_constrained_beam_scorer_finalize(self):
        inputs = self.constrained_beam_search_tester.prepare_inputs()
        self.constrained_beam_search_tester.check_constrained_beam_scorer_finalize(*inputs)