test_modeling_swin.py 18.9 KB
Newer Older
novice's avatar
novice committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch Swin model. """

NielsRogge's avatar
NielsRogge committed
17
import collections
novice's avatar
novice committed
18
19
20
21
22
import inspect
import unittest

from transformers import SwinConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
23
from transformers.utils import cached_property, is_torch_available, is_vision_available
novice's avatar
novice committed
24

Yih-Dar's avatar
Yih-Dar committed
25
from ...test_configuration_common import ConfigTester
26
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
novice's avatar
novice committed
27
28
29
30
31
32


if is_torch_available():
    import torch
    from torch import nn

NielsRogge's avatar
NielsRogge committed
33
    from transformers import SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel
NielsRogge's avatar
NielsRogge committed
34
    from transformers.models.swin.modeling_swin import SWIN_PRETRAINED_MODEL_ARCHIVE_LIST
novice's avatar
novice committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

if is_vision_available():
    from PIL import Image

    from transformers import AutoFeatureExtractor


class SwinModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        image_size=32,
        patch_size=2,
        num_channels=3,
        embed_dim=16,
51
52
        depths=[1, 2, 1],
        num_heads=[2, 2, 4],
novice's avatar
novice committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
        window_size=2,
        mlp_ratio=2.0,
        qkv_bias=True,
        hidden_dropout_prob=0.0,
        attention_probs_dropout_prob=0.0,
        drop_path_rate=0.1,
        hidden_act="gelu",
        use_absolute_embeddings=False,
        patch_norm=True,
        initializer_range=0.02,
        layer_norm_eps=1e-5,
        is_training=True,
        scope=None,
        use_labels=True,
        type_sequence_label_size=10,
68
        encoder_stride=8,
NielsRogge's avatar
NielsRogge committed
69
        out_features=["stage1", "stage2"],
novice's avatar
novice committed
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.image_size = image_size
        self.patch_size = patch_size
        self.num_channels = num_channels
        self.embed_dim = embed_dim
        self.depths = depths
        self.num_heads = num_heads
        self.window_size = window_size
        self.mlp_ratio = mlp_ratio
        self.qkv_bias = qkv_bias
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.drop_path_rate = drop_path_rate
        self.hidden_act = hidden_act
        self.use_absolute_embeddings = use_absolute_embeddings
        self.patch_norm = patch_norm
        self.layer_norm_eps = layer_norm_eps
        self.initializer_range = initializer_range
        self.is_training = is_training
        self.scope = scope
        self.use_labels = use_labels
        self.type_sequence_label_size = type_sequence_label_size
NielsRogge's avatar
NielsRogge committed
94
        self.encoder_stride = encoder_stride
NielsRogge's avatar
NielsRogge committed
95
        self.out_features = out_features
novice's avatar
novice committed
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

    def prepare_config_and_inputs(self):
        pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])

        labels = None
        if self.use_labels:
            labels = ids_tensor([self.batch_size], self.type_sequence_label_size)

        config = self.get_config()

        return config, pixel_values, labels

    def get_config(self):
        return SwinConfig(
            image_size=self.image_size,
            patch_size=self.patch_size,
            num_channels=self.num_channels,
            embed_dim=self.embed_dim,
            depths=self.depths,
            num_heads=self.num_heads,
            window_size=self.window_size,
            mlp_ratio=self.mlp_ratio,
            qkv_bias=self.qkv_bias,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            drop_path_rate=self.drop_path_rate,
            hidden_act=self.hidden_act,
            use_absolute_embeddings=self.use_absolute_embeddings,
            path_norm=self.patch_norm,
            layer_norm_eps=self.layer_norm_eps,
            initializer_range=self.initializer_range,
NielsRogge's avatar
NielsRogge committed
127
            encoder_stride=self.encoder_stride,
NielsRogge's avatar
NielsRogge committed
128
            out_features=self.out_features,
novice's avatar
novice committed
129
130
131
132
133
134
135
136
        )

    def create_and_check_model(self, config, pixel_values, labels):
        model = SwinModel(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)

137
        expected_seq_len = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths) - 1))
138
        expected_dim = int(config.embed_dim * 2 ** (len(config.depths) - 1))
novice's avatar
novice committed
139

140
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, expected_seq_len, expected_dim))
novice's avatar
novice committed
141

NielsRogge's avatar
NielsRogge committed
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
    def create_and_check_backbone(self, config, pixel_values, labels):
        model = SwinBackbone(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)

        # verify hidden states
        self.parent.assertEqual(len(result.feature_maps), len(config.out_features))
        self.parent.assertListEqual(list(result.feature_maps[0].shape), [self.batch_size, model.channels[0], 16, 16])

        # verify channels
        self.parent.assertEqual(len(model.channels), len(config.out_features))

        # verify backbone works with out_features=None
        config.out_features = None
        model = SwinBackbone(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)

        # verify feature maps
        self.parent.assertEqual(len(result.feature_maps), 1)
        self.parent.assertListEqual(list(result.feature_maps[0].shape), [self.batch_size, model.channels[-1], 4, 4])

        # verify channels
        self.parent.assertEqual(len(model.channels), 1)

NielsRogge's avatar
NielsRogge committed
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
    def create_and_check_for_masked_image_modeling(self, config, pixel_values, labels):
        model = SwinForMaskedImageModeling(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)
        self.parent.assertEqual(
            result.logits.shape, (self.batch_size, self.num_channels, self.image_size, self.image_size)
        )

        # test greyscale images
        config.num_channels = 1
        model = SwinForMaskedImageModeling(config)
        model.to(torch_device)
        model.eval()

        pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
        result = model(pixel_values)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, 1, self.image_size, self.image_size))

novice's avatar
novice committed
188
189
190
191
192
193
194
195
    def create_and_check_for_image_classification(self, config, pixel_values, labels):
        config.num_labels = self.type_sequence_label_size
        model = SwinForImageClassification(config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values, labels=labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))

NielsRogge's avatar
NielsRogge committed
196
197
198
199
200
201
202
203
204
205
        # test greyscale images
        config.num_channels = 1
        model = SwinForImageClassification(config)
        model.to(torch_device)
        model.eval()

        pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
        result = model(pixel_values)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))

novice's avatar
novice committed
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            pixel_values,
            labels,
        ) = config_and_inputs
        inputs_dict = {"pixel_values": pixel_values}
        return config, inputs_dict


@require_torch
class SwinModelTest(ModelTesterMixin, unittest.TestCase):

    all_model_classes = (
        (
            SwinModel,
NielsRogge's avatar
NielsRogge committed
223
            SwinBackbone,
novice's avatar
novice committed
224
            SwinForImageClassification,
NielsRogge's avatar
NielsRogge committed
225
            SwinForMaskedImageModeling,
novice's avatar
novice committed
226
227
228
229
        )
        if is_torch_available()
        else ()
    )
230
    fx_compatible = True
novice's avatar
novice committed
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

    test_pruning = False
    test_resize_embeddings = False
    test_head_masking = False

    def setUp(self):
        self.model_tester = SwinModelTester(self)
        self.config_tester = ConfigTester(self, config_class=SwinConfig, embed_dim=37)

    def test_config(self):
        self.create_and_test_config_common_properties()
        self.config_tester.create_and_test_config_to_json_string()
        self.config_tester.create_and_test_config_to_json_file()
        self.config_tester.create_and_test_config_from_and_save_pretrained()
        self.config_tester.create_and_test_config_with_num_labels()
        self.config_tester.check_config_can_be_init_without_params()
        self.config_tester.check_config_arguments_init()

    def create_and_test_config_common_properties(self):
        return

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

NielsRogge's avatar
NielsRogge committed
256
257
258
259
    def test_backbone(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_backbone(*config_and_inputs)

NielsRogge's avatar
NielsRogge committed
260
261
262
263
264
265
266
267
    def test_for_masked_image_modeling(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_masked_image_modeling(*config_and_inputs)

    def test_for_image_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_image_classification(*config_and_inputs)

NielsRogge's avatar
NielsRogge committed
268
    @unittest.skip(reason="Swin does not use inputs_embeds")
novice's avatar
novice committed
269
    def test_inputs_embeds(self):
NielsRogge's avatar
NielsRogge committed
270
271
272
273
        pass

    @unittest.skip(reason="Swin Transformer does not use feedforward chunking")
    def test_feed_forward_chunking(self):
novice's avatar
novice committed
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
        pass

    def test_model_common_attributes(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
            x = model.get_output_embeddings()
            self.assertTrue(x is None or isinstance(x, nn.Linear))

    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            expected_arg_names = ["pixel_values"]
            self.assertListEqual(arg_names[:1], expected_arg_names)

    def test_attention_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True

        for model_class in self.all_model_classes:
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = False
            config.return_dict = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
310
311
312
            attentions = outputs.attentions
            expected_num_attentions = len(self.model_tester.depths)
            self.assertEqual(len(attentions), expected_num_attentions)
novice's avatar
novice committed
313
314
315
316

            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
317
            window_size_squared = config.window_size**2
novice's avatar
novice committed
318
319
320
321
322
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
323
324
325
326
327
328
329
            attentions = outputs.attentions
            self.assertEqual(len(attentions), expected_num_attentions)

            self.assertListEqual(
                list(attentions[0].shape[-3:]),
                [self.model_tester.num_heads[0], window_size_squared, window_size_squared],
            )
novice's avatar
novice committed
330
331
332
333
334
335
336
337
338
339
340
            out_len = len(outputs)

            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

NielsRogge's avatar
NielsRogge committed
341
342
            # also another +1 for reshaped_hidden_states
            added_hidden_states = 1 if model_class.__name__ == "SwinBackbone" else 2
novice's avatar
novice committed
343
344
            self.assertEqual(out_len + added_hidden_states, len(outputs))

345
            self_attentions = outputs.attentions
novice's avatar
novice committed
346

347
348
349
350
351
352
            self.assertEqual(len(self_attentions), expected_num_attentions)

            self.assertListEqual(
                list(self_attentions[0].shape[-3:]),
                [self.model_tester.num_heads[0], window_size_squared, window_size_squared],
            )
novice's avatar
novice committed
353

354
355
356
357
    def check_hidden_states_output(self, inputs_dict, config, model_class, image_size):
        model = model_class(config)
        model.to(torch_device)
        model.eval()
novice's avatar
novice committed
358

359
360
        with torch.no_grad():
            outputs = model(**self._prepare_for_class(inputs_dict, model_class))
novice's avatar
novice committed
361

362
        hidden_states = outputs.hidden_states
novice's avatar
novice committed
363

364
365
366
367
        expected_num_layers = getattr(
            self.model_tester, "expected_num_hidden_layers", len(self.model_tester.depths) + 1
        )
        self.assertEqual(len(hidden_states), expected_num_layers)
novice's avatar
novice committed
368

369
        # Swin has a different seq_length
NielsRogge's avatar
NielsRogge committed
370
371
372
373
374
        patch_size = (
            config.patch_size
            if isinstance(config.patch_size, collections.abc.Iterable)
            else (config.patch_size, config.patch_size)
        )
375

376
        num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
novice's avatar
novice committed
377

378
379
380
381
        self.assertListEqual(
            list(hidden_states[0].shape[-2:]),
            [num_patches, self.model_tester.embed_dim],
        )
novice's avatar
novice committed
382

NielsRogge's avatar
NielsRogge committed
383
384
385
        if not model_class.__name__ == "SwinBackbone":
            reshaped_hidden_states = outputs.reshaped_hidden_states
            self.assertEqual(len(reshaped_hidden_states), expected_num_layers)
386

NielsRogge's avatar
NielsRogge committed
387
388
389
390
391
392
393
394
            batch_size, num_channels, height, width = reshaped_hidden_states[0].shape
            reshaped_hidden_states = (
                reshaped_hidden_states[0].view(batch_size, num_channels, height * width).permute(0, 2, 1)
            )
            self.assertListEqual(
                list(reshaped_hidden_states.shape[-2:]),
                [num_patches, self.model_tester.embed_dim],
            )
395

396
    def test_hidden_states_output(self):
novice's avatar
novice committed
397
398
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

NielsRogge's avatar
NielsRogge committed
399
400
401
402
403
        image_size = (
            self.model_tester.image_size
            if isinstance(self.model_tester.image_size, collections.abc.Iterable)
            else (self.model_tester.image_size, self.model_tester.image_size)
        )
404

novice's avatar
novice committed
405
406
        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
407
            self.check_hidden_states_output(inputs_dict, config, model_class, image_size)
novice's avatar
novice committed
408
409
410
411
412

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

413
414
415
416
417
418
            self.check_hidden_states_output(inputs_dict, config, model_class, image_size)

    def test_hidden_states_output_with_padding(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.patch_size = 3

NielsRogge's avatar
NielsRogge committed
419
420
421
422
423
424
425
426
427
428
        image_size = (
            self.model_tester.image_size
            if isinstance(self.model_tester.image_size, collections.abc.Iterable)
            else (self.model_tester.image_size, self.model_tester.image_size)
        )
        patch_size = (
            config.patch_size
            if isinstance(config.patch_size, collections.abc.Iterable)
            else (config.patch_size, config.patch_size)
        )
429
430
431
432
433
434
435
436
437
438
439
440

        padded_height = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
        padded_width = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            self.check_hidden_states_output(inputs_dict, config, model_class, (padded_height, padded_width))

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True
            self.check_hidden_states_output(inputs_dict, config, model_class, (padded_height, padded_width))
novice's avatar
novice committed
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488

    @slow
    def test_model_from_pretrained(self):
        for model_name in SWIN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = SwinModel.from_pretrained(model_name)
            self.assertIsNotNone(model)

    def test_initialization(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                if "embeddings" not in name and param.requires_grad:
                    self.assertIn(
                        ((param.data.mean() * 1e9).round() / 1e9).item(),
                        [0.0, 1.0],
                        msg=f"Parameter {name} of model {model_class} seems not properly initialized",
                    )


@require_vision
@require_torch
class SwinModelIntegrationTest(unittest.TestCase):
    @cached_property
    def default_feature_extractor(self):
        return (
            AutoFeatureExtractor.from_pretrained("microsoft/swin-tiny-patch4-window7-224")
            if is_vision_available()
            else None
        )

    @slow
    def test_inference_image_classification_head(self):
        model = SwinForImageClassification.from_pretrained("microsoft/swin-tiny-patch4-window7-224").to(torch_device)
        feature_extractor = self.default_feature_extractor

        image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
        inputs = feature_extractor(images=image, return_tensors="pt").to(torch_device)

        # forward pass
        with torch.no_grad():
            outputs = model(**inputs)

        # verify the logits
        expected_shape = torch.Size((1, 1000))
        self.assertEqual(outputs.logits.shape, expected_shape)
489
        expected_slice = torch.tensor([-0.0948, -0.6454, -0.0921]).to(torch_device)
novice's avatar
novice committed
490
        self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4))