test_modeling_swin.py 17.4 KB
Newer Older
novice's avatar
novice committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch Swin model. """

NielsRogge's avatar
NielsRogge committed
17
import collections
novice's avatar
novice committed
18
19
20
21
22
import inspect
import unittest

from transformers import SwinConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
23
from transformers.utils import cached_property, is_torch_available, is_vision_available
novice's avatar
novice committed
24

Yih-Dar's avatar
Yih-Dar committed
25
from ...test_configuration_common import ConfigTester
26
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
novice's avatar
novice committed
27
28
29
30
31
32


if is_torch_available():
    import torch
    from torch import nn

NielsRogge's avatar
NielsRogge committed
33
    from transformers import SwinForImageClassification, SwinForMaskedImageModeling, SwinModel
NielsRogge's avatar
NielsRogge committed
34
    from transformers.models.swin.modeling_swin import SWIN_PRETRAINED_MODEL_ARCHIVE_LIST
novice's avatar
novice committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

if is_vision_available():
    from PIL import Image

    from transformers import AutoFeatureExtractor


class SwinModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        image_size=32,
        patch_size=2,
        num_channels=3,
        embed_dim=16,
51
52
        depths=[1, 2, 1],
        num_heads=[2, 2, 4],
novice's avatar
novice committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
        window_size=2,
        mlp_ratio=2.0,
        qkv_bias=True,
        hidden_dropout_prob=0.0,
        attention_probs_dropout_prob=0.0,
        drop_path_rate=0.1,
        hidden_act="gelu",
        use_absolute_embeddings=False,
        patch_norm=True,
        initializer_range=0.02,
        layer_norm_eps=1e-5,
        is_training=True,
        scope=None,
        use_labels=True,
        type_sequence_label_size=10,
68
        encoder_stride=8,
novice's avatar
novice committed
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.image_size = image_size
        self.patch_size = patch_size
        self.num_channels = num_channels
        self.embed_dim = embed_dim
        self.depths = depths
        self.num_heads = num_heads
        self.window_size = window_size
        self.mlp_ratio = mlp_ratio
        self.qkv_bias = qkv_bias
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.drop_path_rate = drop_path_rate
        self.hidden_act = hidden_act
        self.use_absolute_embeddings = use_absolute_embeddings
        self.patch_norm = patch_norm
        self.layer_norm_eps = layer_norm_eps
        self.initializer_range = initializer_range
        self.is_training = is_training
        self.scope = scope
        self.use_labels = use_labels
        self.type_sequence_label_size = type_sequence_label_size
NielsRogge's avatar
NielsRogge committed
93
        self.encoder_stride = encoder_stride
novice's avatar
novice committed
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

    def prepare_config_and_inputs(self):
        pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])

        labels = None
        if self.use_labels:
            labels = ids_tensor([self.batch_size], self.type_sequence_label_size)

        config = self.get_config()

        return config, pixel_values, labels

    def get_config(self):
        return SwinConfig(
            image_size=self.image_size,
            patch_size=self.patch_size,
            num_channels=self.num_channels,
            embed_dim=self.embed_dim,
            depths=self.depths,
            num_heads=self.num_heads,
            window_size=self.window_size,
            mlp_ratio=self.mlp_ratio,
            qkv_bias=self.qkv_bias,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            drop_path_rate=self.drop_path_rate,
            hidden_act=self.hidden_act,
            use_absolute_embeddings=self.use_absolute_embeddings,
            path_norm=self.patch_norm,
            layer_norm_eps=self.layer_norm_eps,
            initializer_range=self.initializer_range,
NielsRogge's avatar
NielsRogge committed
125
            encoder_stride=self.encoder_stride,
novice's avatar
novice committed
126
127
128
129
130
131
132
133
        )

    def create_and_check_model(self, config, pixel_values, labels):
        model = SwinModel(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)

134
        expected_seq_len = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths) - 1))
135
        expected_dim = int(config.embed_dim * 2 ** (len(config.depths) - 1))
novice's avatar
novice committed
136

137
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, expected_seq_len, expected_dim))
novice's avatar
novice committed
138

NielsRogge's avatar
NielsRogge committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
    def create_and_check_for_masked_image_modeling(self, config, pixel_values, labels):
        model = SwinForMaskedImageModeling(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)
        self.parent.assertEqual(
            result.logits.shape, (self.batch_size, self.num_channels, self.image_size, self.image_size)
        )

        # test greyscale images
        config.num_channels = 1
        model = SwinForMaskedImageModeling(config)
        model.to(torch_device)
        model.eval()

        pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
        result = model(pixel_values)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, 1, self.image_size, self.image_size))

novice's avatar
novice committed
158
159
160
161
162
163
164
165
    def create_and_check_for_image_classification(self, config, pixel_values, labels):
        config.num_labels = self.type_sequence_label_size
        model = SwinForImageClassification(config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values, labels=labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))

NielsRogge's avatar
NielsRogge committed
166
167
168
169
170
171
172
173
174
175
        # test greyscale images
        config.num_channels = 1
        model = SwinForImageClassification(config)
        model.to(torch_device)
        model.eval()

        pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
        result = model(pixel_values)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))

novice's avatar
novice committed
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            pixel_values,
            labels,
        ) = config_and_inputs
        inputs_dict = {"pixel_values": pixel_values}
        return config, inputs_dict


@require_torch
class SwinModelTest(ModelTesterMixin, unittest.TestCase):

    all_model_classes = (
        (
            SwinModel,
            SwinForImageClassification,
NielsRogge's avatar
NielsRogge committed
194
            SwinForMaskedImageModeling,
novice's avatar
novice committed
195
196
197
198
        )
        if is_torch_available()
        else ()
    )
199
    fx_compatible = True
novice's avatar
novice committed
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224

    test_pruning = False
    test_resize_embeddings = False
    test_head_masking = False

    def setUp(self):
        self.model_tester = SwinModelTester(self)
        self.config_tester = ConfigTester(self, config_class=SwinConfig, embed_dim=37)

    def test_config(self):
        self.create_and_test_config_common_properties()
        self.config_tester.create_and_test_config_to_json_string()
        self.config_tester.create_and_test_config_to_json_file()
        self.config_tester.create_and_test_config_from_and_save_pretrained()
        self.config_tester.create_and_test_config_with_num_labels()
        self.config_tester.check_config_can_be_init_without_params()
        self.config_tester.check_config_arguments_init()

    def create_and_test_config_common_properties(self):
        return

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

NielsRogge's avatar
NielsRogge committed
225
226
227
228
229
230
231
232
    def test_for_masked_image_modeling(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_masked_image_modeling(*config_and_inputs)

    def test_for_image_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_image_classification(*config_and_inputs)

novice's avatar
novice committed
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
    def test_inputs_embeds(self):
        # Swin does not use inputs_embeds
        pass

    def test_model_common_attributes(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
            x = model.get_output_embeddings()
            self.assertTrue(x is None or isinstance(x, nn.Linear))

    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            expected_arg_names = ["pixel_values"]
            self.assertListEqual(arg_names[:1], expected_arg_names)

    def test_attention_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True

        for model_class in self.all_model_classes:
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = False
            config.return_dict = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
271
272
273
            attentions = outputs.attentions
            expected_num_attentions = len(self.model_tester.depths)
            self.assertEqual(len(attentions), expected_num_attentions)
novice's avatar
novice committed
274
275
276
277

            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
278
            window_size_squared = config.window_size**2
novice's avatar
novice committed
279
280
281
282
283
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
284
285
286
287
288
289
290
            attentions = outputs.attentions
            self.assertEqual(len(attentions), expected_num_attentions)

            self.assertListEqual(
                list(attentions[0].shape[-3:]),
                [self.model_tester.num_heads[0], window_size_squared, window_size_squared],
            )
novice's avatar
novice committed
291
292
293
294
295
296
297
298
299
300
301
302
303
304
            out_len = len(outputs)

            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            if hasattr(self.model_tester, "num_hidden_states_types"):
                added_hidden_states = self.model_tester.num_hidden_states_types
            else:
305
306
                # also another +1 for reshaped_hidden_states
                added_hidden_states = 2
novice's avatar
novice committed
307
308
            self.assertEqual(out_len + added_hidden_states, len(outputs))

309
            self_attentions = outputs.attentions
novice's avatar
novice committed
310

311
312
313
314
315
316
            self.assertEqual(len(self_attentions), expected_num_attentions)

            self.assertListEqual(
                list(self_attentions[0].shape[-3:]),
                [self.model_tester.num_heads[0], window_size_squared, window_size_squared],
            )
novice's avatar
novice committed
317

318
319
320
321
    def check_hidden_states_output(self, inputs_dict, config, model_class, image_size):
        model = model_class(config)
        model.to(torch_device)
        model.eval()
novice's avatar
novice committed
322

323
324
        with torch.no_grad():
            outputs = model(**self._prepare_for_class(inputs_dict, model_class))
novice's avatar
novice committed
325

326
        hidden_states = outputs.hidden_states
novice's avatar
novice committed
327

328
329
330
331
        expected_num_layers = getattr(
            self.model_tester, "expected_num_hidden_layers", len(self.model_tester.depths) + 1
        )
        self.assertEqual(len(hidden_states), expected_num_layers)
novice's avatar
novice committed
332

333
        # Swin has a different seq_length
NielsRogge's avatar
NielsRogge committed
334
335
336
337
338
        patch_size = (
            config.patch_size
            if isinstance(config.patch_size, collections.abc.Iterable)
            else (config.patch_size, config.patch_size)
        )
339

340
        num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
novice's avatar
novice committed
341

342
343
344
345
        self.assertListEqual(
            list(hidden_states[0].shape[-2:]),
            [num_patches, self.model_tester.embed_dim],
        )
novice's avatar
novice committed
346

347
348
        reshaped_hidden_states = outputs.reshaped_hidden_states
        self.assertEqual(len(reshaped_hidden_states), expected_num_layers)
349

350
351
352
353
354
355
356
357
        batch_size, num_channels, height, width = reshaped_hidden_states[0].shape
        reshaped_hidden_states = (
            reshaped_hidden_states[0].view(batch_size, num_channels, height * width).permute(0, 2, 1)
        )
        self.assertListEqual(
            list(reshaped_hidden_states.shape[-2:]),
            [num_patches, self.model_tester.embed_dim],
        )
358

359
    def test_hidden_states_output(self):
novice's avatar
novice committed
360
361
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

NielsRogge's avatar
NielsRogge committed
362
363
364
365
366
        image_size = (
            self.model_tester.image_size
            if isinstance(self.model_tester.image_size, collections.abc.Iterable)
            else (self.model_tester.image_size, self.model_tester.image_size)
        )
367

novice's avatar
novice committed
368
369
        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
370
            self.check_hidden_states_output(inputs_dict, config, model_class, image_size)
novice's avatar
novice committed
371
372
373
374
375

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

376
377
378
379
380
381
            self.check_hidden_states_output(inputs_dict, config, model_class, image_size)

    def test_hidden_states_output_with_padding(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.patch_size = 3

NielsRogge's avatar
NielsRogge committed
382
383
384
385
386
387
388
389
390
391
        image_size = (
            self.model_tester.image_size
            if isinstance(self.model_tester.image_size, collections.abc.Iterable)
            else (self.model_tester.image_size, self.model_tester.image_size)
        )
        patch_size = (
            config.patch_size
            if isinstance(config.patch_size, collections.abc.Iterable)
            else (config.patch_size, config.patch_size)
        )
392
393
394
395
396
397
398
399
400
401
402
403

        padded_height = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
        padded_width = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            self.check_hidden_states_output(inputs_dict, config, model_class, (padded_height, padded_width))

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True
            self.check_hidden_states_output(inputs_dict, config, model_class, (padded_height, padded_width))
novice's avatar
novice committed
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451

    @slow
    def test_model_from_pretrained(self):
        for model_name in SWIN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = SwinModel.from_pretrained(model_name)
            self.assertIsNotNone(model)

    def test_initialization(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                if "embeddings" not in name and param.requires_grad:
                    self.assertIn(
                        ((param.data.mean() * 1e9).round() / 1e9).item(),
                        [0.0, 1.0],
                        msg=f"Parameter {name} of model {model_class} seems not properly initialized",
                    )


@require_vision
@require_torch
class SwinModelIntegrationTest(unittest.TestCase):
    @cached_property
    def default_feature_extractor(self):
        return (
            AutoFeatureExtractor.from_pretrained("microsoft/swin-tiny-patch4-window7-224")
            if is_vision_available()
            else None
        )

    @slow
    def test_inference_image_classification_head(self):
        model = SwinForImageClassification.from_pretrained("microsoft/swin-tiny-patch4-window7-224").to(torch_device)
        feature_extractor = self.default_feature_extractor

        image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
        inputs = feature_extractor(images=image, return_tensors="pt").to(torch_device)

        # forward pass
        with torch.no_grad():
            outputs = model(**inputs)

        # verify the logits
        expected_shape = torch.Size((1, 1000))
        self.assertEqual(outputs.logits.shape, expected_shape)
452
        expected_slice = torch.tensor([-0.0948, -0.6454, -0.0921]).to(torch_device)
novice's avatar
novice committed
453
        self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4))