test_modeling_blenderbot.py 22.2 KB
Newer Older
Sam Shleifer's avatar
Sam Shleifer committed
1
# coding=utf-8
2
# Copyright 2021, The HuggingFace Inc. team. All rights reserved.
Sam Shleifer's avatar
Sam Shleifer committed
3
#
Sylvain Gugger's avatar
Sylvain Gugger committed
4
# Licensed under the Apache License, Version 2.0 (the "License");
Sam Shleifer's avatar
Sam Shleifer committed
5
6
7
8
9
10
11
12
13
14
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Arthur's avatar
Arthur committed
15
"""Testing suite for the PyTorch Blenderbot model."""
16
17

import tempfile
Sam Shleifer's avatar
Sam Shleifer committed
18
19
import unittest

20
from transformers import BlenderbotConfig, is_torch_available
21
22
23
24
25
26
27
28
29
from transformers.testing_utils import (
    backend_empty_cache,
    require_sentencepiece,
    require_tokenizers,
    require_torch,
    require_torch_fp16,
    slow,
    torch_device,
)
30
from transformers.utils import cached_property
Sam Shleifer's avatar
Sam Shleifer committed
31

32
from ...generation.test_utils import GenerationTesterMixin
Yih-Dar's avatar
Yih-Dar committed
33
34
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
35
from ...test_pipeline_mixin import PipelineTesterMixin
Sam Shleifer's avatar
Sam Shleifer committed
36
37
38
39
40


if is_torch_available():
    import torch

41
    from transformers import BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotTokenizer
42
43
44
45
46
    from transformers.models.blenderbot.modeling_blenderbot import (
        BlenderbotDecoder,
        BlenderbotEncoder,
        BlenderbotForCausalLM,
    )
47
48
49
50
51
52
53
54


def prepare_blenderbot_inputs_dict(
    config,
    input_ids,
    decoder_input_ids,
    attention_mask=None,
    decoder_attention_mask=None,
55
56
    head_mask=None,
    decoder_head_mask=None,
57
    cross_attn_head_mask=None,
58
59
60
61
62
):
    if attention_mask is None:
        attention_mask = input_ids.ne(config.pad_token_id)
    if decoder_attention_mask is None:
        decoder_attention_mask = decoder_input_ids.ne(config.pad_token_id)
63
    if head_mask is None:
Patrick von Platen's avatar
Patrick von Platen committed
64
        head_mask = torch.ones(config.encoder_layers, config.encoder_attention_heads, device=torch_device)
65
    if decoder_head_mask is None:
Patrick von Platen's avatar
Patrick von Platen committed
66
        decoder_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device)
67
68
    if cross_attn_head_mask is None:
        cross_attn_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device)
69
70
71
72
73
    return {
        "input_ids": input_ids,
        "decoder_input_ids": decoder_input_ids,
        "attention_mask": attention_mask,
        "decoder_attention_mask": attention_mask,
74
75
        "head_mask": head_mask,
        "decoder_head_mask": decoder_head_mask,
76
        "cross_attn_head_mask": cross_attn_head_mask,
77
    }
Sam Shleifer's avatar
Sam Shleifer committed
78
79
80


class BlenderbotModelTester:
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=7,
        is_training=True,
        use_labels=False,
        vocab_size=99,
        hidden_size=16,
        num_hidden_layers=2,
        num_attention_heads=4,
        intermediate_size=4,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
96
        max_position_embeddings=50,
97
98
99
100
        eos_token_id=2,
        pad_token_id=1,
        bos_token_id=0,
    ):
Sam Shleifer's avatar
Sam Shleifer committed
101
        self.parent = parent
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.eos_token_id = eos_token_id
        self.pad_token_id = pad_token_id
        self.bos_token_id = bos_token_id

119
120
121
122
123
124
        # forcing a certain token to be generated, sets all other tokens to -inf
        # if however the token to be generated is already at -inf then it can lead token
        # `nan` values and thus break generation
        self.forced_bos_token_id = None
        self.forced_eos_token_id = None

125
126
127
128
129
130
131
132
    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).clamp(
            3,
        )
        input_ids[:, -1] = self.eos_token_id  # Eos Token

        decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

133
134
135
136
137
138
        config = self.get_config()
        inputs_dict = prepare_blenderbot_inputs_dict(config, input_ids, decoder_input_ids)
        return config, inputs_dict

    def get_config(self):
        return BlenderbotConfig(
Sam Shleifer's avatar
Sam Shleifer committed
139
            vocab_size=self.vocab_size,
140
            d_model=self.hidden_size,
Sam Shleifer's avatar
Sam Shleifer committed
141
142
143
144
            encoder_layers=self.num_hidden_layers,
            decoder_layers=self.num_hidden_layers,
            encoder_attention_heads=self.num_attention_heads,
            decoder_attention_heads=self.num_attention_heads,
145
146
147
148
149
150
151
152
            encoder_ffn_dim=self.intermediate_size,
            decoder_ffn_dim=self.intermediate_size,
            dropout=self.hidden_dropout_prob,
            attention_dropout=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            eos_token_id=self.eos_token_id,
            bos_token_id=self.bos_token_id,
            pad_token_id=self.pad_token_id,
153
154
            forced_bos_token_id=self.forced_bos_token_id,
            forced_eos_token_id=self.forced_eos_token_id,
Sam Shleifer's avatar
Sam Shleifer committed
155
156
        )

157
158
159
    def get_pipeline_config(self):
        config = self.get_config()
        config.max_position_embeddings = 100
160
        config.vocab_size = 300
161
162
        return config

Sam Shleifer's avatar
Sam Shleifer committed
163
    def prepare_config_and_inputs_for_common(self):
164
165
166
167
168
169
170
        config, inputs_dict = self.prepare_config_and_inputs()
        return config, inputs_dict

    def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict):
        model = BlenderbotModel(config=config).get_decoder().to(torch_device).eval()
        input_ids = inputs_dict["input_ids"]
        attention_mask = inputs_dict["attention_mask"]
171
        head_mask = inputs_dict["head_mask"]
172
173

        # first forward pass
174
        outputs = model(input_ids, attention_mask=attention_mask, head_mask=head_mask, use_cache=True)
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198

        output, past_key_values = outputs.to_tuple()

        # create hypothetical multiple next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
        next_attn_mask = ids_tensor((self.batch_size, 3), 2)

        # append to next input_ids and
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1)

        output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"]
        output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[
            "last_hidden_state"
        ]

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()

        self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])

        # test that outputs are equal for slice
199
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

    def check_encoder_decoder_model_standalone(self, config, inputs_dict):
        model = BlenderbotModel(config=config).to(torch_device).eval()
        outputs = model(**inputs_dict)

        encoder_last_hidden_state = outputs.encoder_last_hidden_state
        last_hidden_state = outputs.last_hidden_state

        with tempfile.TemporaryDirectory() as tmpdirname:
            encoder = model.get_encoder()
            encoder.save_pretrained(tmpdirname)
            encoder = BlenderbotEncoder.from_pretrained(tmpdirname).to(torch_device)

        encoder_last_hidden_state_2 = encoder(inputs_dict["input_ids"], attention_mask=inputs_dict["attention_mask"])[
            0
        ]

        self.parent.assertTrue((encoder_last_hidden_state_2 - encoder_last_hidden_state).abs().max().item() < 1e-3)

        with tempfile.TemporaryDirectory() as tmpdirname:
            decoder = model.get_decoder()
            decoder.save_pretrained(tmpdirname)
            decoder = BlenderbotDecoder.from_pretrained(tmpdirname).to(torch_device)

        last_hidden_state_2 = decoder(
            input_ids=inputs_dict["decoder_input_ids"],
            attention_mask=inputs_dict["decoder_attention_mask"],
            encoder_hidden_states=encoder_last_hidden_state,
            encoder_attention_mask=inputs_dict["attention_mask"],
        )[0]

        self.parent.assertTrue((last_hidden_state_2 - last_hidden_state).abs().max().item() < 1e-3)
Sam Shleifer's avatar
Sam Shleifer committed
232
233
234


@require_torch
235
class BlenderbotModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
236
237
    all_model_classes = (BlenderbotModel, BlenderbotForConditionalGeneration) if is_torch_available() else ()
    all_generative_model_classes = (BlenderbotForConditionalGeneration,) if is_torch_available() else ()
238
239
240
241
242
243
    pipeline_model_mapping = (
        {
            "conversational": BlenderbotForConditionalGeneration,
            "feature-extraction": BlenderbotModel,
            "summarization": BlenderbotForConditionalGeneration,
            "text-generation": BlenderbotForCausalLM,
Yih-Dar's avatar
Yih-Dar committed
244
245
            "text2text-generation": BlenderbotForConditionalGeneration,
            "translation": BlenderbotForConditionalGeneration,
246
247
248
249
        }
        if is_torch_available()
        else {}
    )
Sam Shleifer's avatar
Sam Shleifer committed
250
    is_encoder_decoder = True
251
    fx_compatible = True
Sam Shleifer's avatar
Sam Shleifer committed
252
253
254
255
256
257
258
    test_pruning = False
    test_missing_keys = False

    def setUp(self):
        self.model_tester = BlenderbotModelTester(self)
        self.config_tester = ConfigTester(self, config_class=BlenderbotConfig)

259
260
261
262
263
264
265
266
267
268
269
270
    def test_config(self):
        self.config_tester.run_common_tests()

    def test_save_load_strict(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs()
        for model_class in self.all_model_classes:
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True)
            self.assertEqual(info["missing_keys"], [])
Sam Shleifer's avatar
Sam Shleifer committed
271

272
273
274
    def test_decoder_model_past_with_large_inputs(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)
Sam Shleifer's avatar
Sam Shleifer committed
275

276
277
278
    def test_encoder_decoder_model_standalone(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common()
        self.model_tester.check_encoder_decoder_model_standalone(*config_and_inputs)
Sam Shleifer's avatar
Sam Shleifer committed
279

280
    @require_torch_fp16
281
282
283
284
285
    def test_generate_fp16(self):
        config, input_dict = self.model_tester.prepare_config_and_inputs()
        input_ids = input_dict["input_ids"]
        attention_mask = input_ids.ne(1).to(torch_device)
        model = BlenderbotForConditionalGeneration(config).eval().to(torch_device)
286
        model.half()
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
        model.generate(input_ids, attention_mask=attention_mask)
        model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3)


def assert_tensors_close(a, b, atol=1e-12, prefix=""):
    """If tensors have different shapes, different values or a and b are not both tensors, raise a nice Assertion error."""
    if a is None and b is None:
        return True
    try:
        if torch.allclose(a, b, atol=atol):
            return True
        raise
    except Exception:
        pct_different = (torch.gt((a - b).abs(), atol)).float().mean().item()
        if a.numel() > 100:
            msg = f"tensor values are {pct_different:.1%} percent different."
        else:
            msg = f"{a} != {b}"
        if prefix:
            msg = prefix + ": " + msg
        raise AssertionError(msg)
308

Sam Shleifer's avatar
Sam Shleifer committed
309
310
311

@unittest.skipUnless(torch_device != "cpu", "3B test too slow on CPU.")
@require_torch
312
313
@require_sentencepiece
@require_tokenizers
Sam Shleifer's avatar
Sam Shleifer committed
314
315
316
317
318
319
320
321
322
class Blenderbot3BIntegrationTests(unittest.TestCase):
    ckpt = "facebook/blenderbot-3B"

    @cached_property
    def tokenizer(self):
        return BlenderbotTokenizer.from_pretrained(self.ckpt)

    @slow
    def test_generation_from_short_input_same_as_parlai_3B(self):
323
324
        FASTER_GEN_KWARGS = {"num_beams": 1, "early_stopping": True, "min_length": 15, "max_length": 25}
        TOK_DECODE_KW = {"skip_special_tokens": True, "clean_up_tokenization_spaces": True}
325

326
        backend_empty_cache(torch_device)
327
        model = BlenderbotForConditionalGeneration.from_pretrained(self.ckpt).half().to(torch_device)
Sam Shleifer's avatar
Sam Shleifer committed
328
329
330

        src_text = ["Sam"]
        model_inputs = self.tokenizer(src_text, return_tensors="pt").to(torch_device)
331

332
        generated_utterances = model.generate(**model_inputs, **FASTER_GEN_KWARGS)
Sam Shleifer's avatar
Sam Shleifer committed
333
334
335
336
337
        tgt_text = 'Sam is a great name. It means "sun" in Gaelic.'

        generated_txt = self.tokenizer.batch_decode(generated_utterances, **TOK_DECODE_KW)
        assert generated_txt[0].strip() == tgt_text

Sylvain Gugger's avatar
Sylvain Gugger committed
338
339
340
341
        src_text = (
            "Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel"
            " like i'm going to throw up.\nand why is that?"
        )
Sam Shleifer's avatar
Sam Shleifer committed
342
343

        model_inputs = self.tokenizer([src_text], return_tensors="pt").to(torch_device)
344

345
        generated_ids = model.generate(**model_inputs, **FASTER_GEN_KWARGS)[0]
Sam Shleifer's avatar
Sam Shleifer committed
346
347
348
        reply = self.tokenizer.decode(generated_ids, **TOK_DECODE_KW)

        assert "I think it's because we are so worried about what people think of us." == reply.strip()
349
        del model
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366


class BlenderbotStandaloneDecoderModelTester:
    def __init__(
        self,
        parent,
        vocab_size=99,
        batch_size=13,
        d_model=16,
        decoder_seq_length=7,
        is_training=True,
        is_decoder=True,
        use_attention_mask=True,
        use_cache=False,
        use_labels=True,
        decoder_start_token_id=2,
        decoder_ffn_dim=32,
367
        decoder_layers=2,
368
369
370
371
        encoder_attention_heads=4,
        decoder_attention_heads=4,
        max_position_embeddings=30,
        is_encoder_decoder=False,
372
        encoder_no_repeat_ngram_size=0,
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
        pad_token_id=0,
        bos_token_id=1,
        eos_token_id=2,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.decoder_seq_length = decoder_seq_length
        # For common tests
        self.seq_length = self.decoder_seq_length
        self.is_training = is_training
        self.use_attention_mask = use_attention_mask
        self.use_labels = use_labels

        self.vocab_size = vocab_size
        self.d_model = d_model
        self.hidden_size = d_model
        self.num_hidden_layers = decoder_layers
        self.decoder_layers = decoder_layers
        self.decoder_ffn_dim = decoder_ffn_dim
        self.encoder_attention_heads = encoder_attention_heads
        self.decoder_attention_heads = decoder_attention_heads
        self.num_attention_heads = decoder_attention_heads
        self.eos_token_id = eos_token_id
        self.bos_token_id = bos_token_id
        self.pad_token_id = pad_token_id
        self.decoder_start_token_id = decoder_start_token_id
        self.use_cache = use_cache
        self.max_position_embeddings = max_position_embeddings
        self.is_encoder_decoder = is_encoder_decoder
403
        self.encoder_no_repeat_ngram_size = encoder_no_repeat_ngram_size
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434

        self.scope = None
        self.decoder_key_length = decoder_seq_length
        self.base_model_out_len = 2
        self.decoder_attention_idx = 1

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)

        attention_mask = None
        if self.use_attention_mask:
            attention_mask = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2)

        lm_labels = None
        if self.use_labels:
            lm_labels = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)

        config = BlenderbotConfig(
            vocab_size=self.vocab_size,
            d_model=self.d_model,
            decoder_layers=self.decoder_layers,
            decoder_ffn_dim=self.decoder_ffn_dim,
            encoder_attention_heads=self.encoder_attention_heads,
            decoder_attention_heads=self.decoder_attention_heads,
            eos_token_id=self.eos_token_id,
            bos_token_id=self.bos_token_id,
            use_cache=self.use_cache,
            pad_token_id=self.pad_token_id,
            decoder_start_token_id=self.decoder_start_token_id,
            max_position_embeddings=self.max_position_embeddings,
            is_encoder_decoder=self.is_encoder_decoder,
435
            encoder_no_repeat_ngram_size=self.encoder_no_repeat_ngram_size,
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
        )

        return (
            config,
            input_ids,
            attention_mask,
            lm_labels,
        )

    def create_and_check_decoder_model_past(
        self,
        config,
        input_ids,
        attention_mask,
        lm_labels,
    ):
        config.use_cache = True
        model = BlenderbotDecoder(config=config).to(torch_device).eval()
        # first forward pass
        outputs = model(input_ids, use_cache=True)
        outputs_use_cache_conf = model(input_ids)
        outputs_no_past = model(input_ids, use_cache=False)

        self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf))
        self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1)

        past_key_values = outputs["past_key_values"]

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)

        # append to next input_ids and
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)

        output_from_no_past = model(next_input_ids)["last_hidden_state"]
        output_from_past = model(next_tokens, past_key_values=past_key_values)["last_hidden_state"]

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()

        # test that outputs are equal for slice
        assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)

    def create_and_check_decoder_model_attention_mask_past(
        self,
        config,
        input_ids,
        attention_mask,
        lm_labels,
    ):
        model = BlenderbotDecoder(config=config).to(torch_device).eval()

        # create attention mask
        attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device)

        half_seq_length = input_ids.shape[-1] // 2
        attn_mask[:, half_seq_length:] = 0

        # first forward pass
        past_key_values = model(input_ids, attention_mask=attn_mask, use_cache=True)["past_key_values"]
        #        past_key_values = model(input_ids, use_cache=True)["past_key_values"]

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)

        # change a random masked slice from input_ids
        random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1
        random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1)
        input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens

        # append to next input_ids and attn_mask
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        attn_mask = torch.cat(
            [attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)],
            dim=1,
        )

        # get two different outputs
        output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"]
        output_from_past = model(next_tokens, past_key_values=past_key_values, attention_mask=attn_mask)[
            "last_hidden_state"
        ]

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()

        # test that outputs are equal for slice
        assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            attention_mask,
            lm_labels,
        ) = config_and_inputs

        inputs_dict = {
            "input_ids": input_ids,
            "attention_mask": attention_mask,
        }
        return config, inputs_dict


@require_torch
class BlenderbotStandaloneDecoderModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
    all_model_classes = (BlenderbotDecoder, BlenderbotForCausalLM) if is_torch_available() else ()
    all_generative_model_classes = (BlenderbotForCausalLM,) if is_torch_available() else ()
    test_pruning = False
    is_encoder_decoder = False

    def setUp(
        self,
    ):
        self.model_tester = BlenderbotStandaloneDecoderModelTester(self, is_training=False)
        self.config_tester = ConfigTester(self, config_class=BlenderbotConfig)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_decoder_model_past(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_decoder_model_past(*config_and_inputs)

    def test_decoder_model_attn_mask_past(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_decoder_model_attention_mask_past(*config_and_inputs)

    def test_retain_grad_hidden_states_attentions(self):
        # decoder cannot keep gradients
        return