test_modeling_blenderbot.py 21.6 KB
Newer Older
Sam Shleifer's avatar
Sam Shleifer committed
1
# coding=utf-8
2
# Copyright 2021, The HuggingFace Inc. team. All rights reserved.
Sam Shleifer's avatar
Sam Shleifer committed
3
#
Sylvain Gugger's avatar
Sylvain Gugger committed
4
# Licensed under the Apache License, Version 2.0 (the "License");
Sam Shleifer's avatar
Sam Shleifer committed
5
6
7
8
9
10
11
12
13
14
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
15
16
17
""" Testing suite for the PyTorch Blenderbot model. """

import tempfile
Sam Shleifer's avatar
Sam Shleifer committed
18
19
import unittest

20
from transformers import BlenderbotConfig, is_torch_available
21
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
22
from transformers.utils import cached_property
Sam Shleifer's avatar
Sam Shleifer committed
23

Yih-Dar's avatar
Yih-Dar committed
24
25
26
from ...generation.test_generation_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
Sam Shleifer's avatar
Sam Shleifer committed
27
28
29
30
31


if is_torch_available():
    import torch

32
    from transformers import BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotTokenizer
33
34
35
36
37
    from transformers.models.blenderbot.modeling_blenderbot import (
        BlenderbotDecoder,
        BlenderbotEncoder,
        BlenderbotForCausalLM,
    )
38
39
40
41
42
43
44
45


def prepare_blenderbot_inputs_dict(
    config,
    input_ids,
    decoder_input_ids,
    attention_mask=None,
    decoder_attention_mask=None,
46
47
    head_mask=None,
    decoder_head_mask=None,
48
    cross_attn_head_mask=None,
49
50
51
52
53
):
    if attention_mask is None:
        attention_mask = input_ids.ne(config.pad_token_id)
    if decoder_attention_mask is None:
        decoder_attention_mask = decoder_input_ids.ne(config.pad_token_id)
54
    if head_mask is None:
Patrick von Platen's avatar
Patrick von Platen committed
55
        head_mask = torch.ones(config.encoder_layers, config.encoder_attention_heads, device=torch_device)
56
    if decoder_head_mask is None:
Patrick von Platen's avatar
Patrick von Platen committed
57
        decoder_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device)
58
59
    if cross_attn_head_mask is None:
        cross_attn_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device)
60
61
62
63
64
    return {
        "input_ids": input_ids,
        "decoder_input_ids": decoder_input_ids,
        "attention_mask": attention_mask,
        "decoder_attention_mask": attention_mask,
65
66
        "head_mask": head_mask,
        "decoder_head_mask": decoder_head_mask,
67
        "cross_attn_head_mask": cross_attn_head_mask,
68
    }
Sam Shleifer's avatar
Sam Shleifer committed
69
70
71


class BlenderbotModelTester:
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=7,
        is_training=True,
        use_labels=False,
        vocab_size=99,
        hidden_size=16,
        num_hidden_layers=2,
        num_attention_heads=4,
        intermediate_size=4,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=20,
        eos_token_id=2,
        pad_token_id=1,
        bos_token_id=0,
    ):
Sam Shleifer's avatar
Sam Shleifer committed
92
        self.parent = parent
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.eos_token_id = eos_token_id
        self.pad_token_id = pad_token_id
        self.bos_token_id = bos_token_id

110
111
112
113
114
115
        # forcing a certain token to be generated, sets all other tokens to -inf
        # if however the token to be generated is already at -inf then it can lead token
        # `nan` values and thus break generation
        self.forced_bos_token_id = None
        self.forced_eos_token_id = None

116
117
118
119
120
121
122
123
    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).clamp(
            3,
        )
        input_ids[:, -1] = self.eos_token_id  # Eos Token

        decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

124
125
126
127
128
129
        config = self.get_config()
        inputs_dict = prepare_blenderbot_inputs_dict(config, input_ids, decoder_input_ids)
        return config, inputs_dict

    def get_config(self):
        return BlenderbotConfig(
Sam Shleifer's avatar
Sam Shleifer committed
130
            vocab_size=self.vocab_size,
131
            d_model=self.hidden_size,
Sam Shleifer's avatar
Sam Shleifer committed
132
133
134
135
            encoder_layers=self.num_hidden_layers,
            decoder_layers=self.num_hidden_layers,
            encoder_attention_heads=self.num_attention_heads,
            decoder_attention_heads=self.num_attention_heads,
136
137
138
139
140
141
142
143
            encoder_ffn_dim=self.intermediate_size,
            decoder_ffn_dim=self.intermediate_size,
            dropout=self.hidden_dropout_prob,
            attention_dropout=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            eos_token_id=self.eos_token_id,
            bos_token_id=self.bos_token_id,
            pad_token_id=self.pad_token_id,
144
145
            forced_bos_token_id=self.forced_bos_token_id,
            forced_eos_token_id=self.forced_eos_token_id,
Sam Shleifer's avatar
Sam Shleifer committed
146
147
        )

148
149
150
    def get_pipeline_config(self):
        config = self.get_config()
        config.max_position_embeddings = 100
151
        config.vocab_size = 300
152
153
        return config

Sam Shleifer's avatar
Sam Shleifer committed
154
    def prepare_config_and_inputs_for_common(self):
155
156
157
158
159
160
161
        config, inputs_dict = self.prepare_config_and_inputs()
        return config, inputs_dict

    def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict):
        model = BlenderbotModel(config=config).get_decoder().to(torch_device).eval()
        input_ids = inputs_dict["input_ids"]
        attention_mask = inputs_dict["attention_mask"]
162
        head_mask = inputs_dict["head_mask"]
163
164

        # first forward pass
165
        outputs = model(input_ids, attention_mask=attention_mask, head_mask=head_mask, use_cache=True)
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

        output, past_key_values = outputs.to_tuple()

        # create hypothetical multiple next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
        next_attn_mask = ids_tensor((self.batch_size, 3), 2)

        # append to next input_ids and
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1)

        output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"]
        output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[
            "last_hidden_state"
        ]

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()

        self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])

        # test that outputs are equal for slice
190
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222

    def check_encoder_decoder_model_standalone(self, config, inputs_dict):
        model = BlenderbotModel(config=config).to(torch_device).eval()
        outputs = model(**inputs_dict)

        encoder_last_hidden_state = outputs.encoder_last_hidden_state
        last_hidden_state = outputs.last_hidden_state

        with tempfile.TemporaryDirectory() as tmpdirname:
            encoder = model.get_encoder()
            encoder.save_pretrained(tmpdirname)
            encoder = BlenderbotEncoder.from_pretrained(tmpdirname).to(torch_device)

        encoder_last_hidden_state_2 = encoder(inputs_dict["input_ids"], attention_mask=inputs_dict["attention_mask"])[
            0
        ]

        self.parent.assertTrue((encoder_last_hidden_state_2 - encoder_last_hidden_state).abs().max().item() < 1e-3)

        with tempfile.TemporaryDirectory() as tmpdirname:
            decoder = model.get_decoder()
            decoder.save_pretrained(tmpdirname)
            decoder = BlenderbotDecoder.from_pretrained(tmpdirname).to(torch_device)

        last_hidden_state_2 = decoder(
            input_ids=inputs_dict["decoder_input_ids"],
            attention_mask=inputs_dict["decoder_attention_mask"],
            encoder_hidden_states=encoder_last_hidden_state,
            encoder_attention_mask=inputs_dict["attention_mask"],
        )[0]

        self.parent.assertTrue((last_hidden_state_2 - last_hidden_state).abs().max().item() < 1e-3)
Sam Shleifer's avatar
Sam Shleifer committed
223
224
225


@require_torch
226
227
228
class BlenderbotModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
    all_model_classes = (BlenderbotModel, BlenderbotForConditionalGeneration) if is_torch_available() else ()
    all_generative_model_classes = (BlenderbotForConditionalGeneration,) if is_torch_available() else ()
Sam Shleifer's avatar
Sam Shleifer committed
229
    is_encoder_decoder = True
230
    fx_compatible = True
Sam Shleifer's avatar
Sam Shleifer committed
231
232
233
234
235
236
237
    test_pruning = False
    test_missing_keys = False

    def setUp(self):
        self.model_tester = BlenderbotModelTester(self)
        self.config_tester = ConfigTester(self, config_class=BlenderbotConfig)

238
239
240
241
242
243
244
245
246
247
248
249
    def test_config(self):
        self.config_tester.run_common_tests()

    def test_save_load_strict(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs()
        for model_class in self.all_model_classes:
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True)
            self.assertEqual(info["missing_keys"], [])
Sam Shleifer's avatar
Sam Shleifer committed
250

251
252
253
    def test_decoder_model_past_with_large_inputs(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)
Sam Shleifer's avatar
Sam Shleifer committed
254

255
256
257
    def test_encoder_decoder_model_standalone(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common()
        self.model_tester.check_encoder_decoder_model_standalone(*config_and_inputs)
Sam Shleifer's avatar
Sam Shleifer committed
258

259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
    def test_generate_fp16(self):
        config, input_dict = self.model_tester.prepare_config_and_inputs()
        input_ids = input_dict["input_ids"]
        attention_mask = input_ids.ne(1).to(torch_device)
        model = BlenderbotForConditionalGeneration(config).eval().to(torch_device)
        if torch_device == "cuda":
            model.half()
        model.generate(input_ids, attention_mask=attention_mask)
        model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3)


def assert_tensors_close(a, b, atol=1e-12, prefix=""):
    """If tensors have different shapes, different values or a and b are not both tensors, raise a nice Assertion error."""
    if a is None and b is None:
        return True
    try:
        if torch.allclose(a, b, atol=atol):
            return True
        raise
    except Exception:
        pct_different = (torch.gt((a - b).abs(), atol)).float().mean().item()
        if a.numel() > 100:
            msg = f"tensor values are {pct_different:.1%} percent different."
        else:
            msg = f"{a} != {b}"
        if prefix:
            msg = prefix + ": " + msg
        raise AssertionError(msg)
287

Sam Shleifer's avatar
Sam Shleifer committed
288
289
290

@unittest.skipUnless(torch_device != "cpu", "3B test too slow on CPU.")
@require_torch
291
292
@require_sentencepiece
@require_tokenizers
Sam Shleifer's avatar
Sam Shleifer committed
293
294
295
296
297
298
299
300
301
class Blenderbot3BIntegrationTests(unittest.TestCase):
    ckpt = "facebook/blenderbot-3B"

    @cached_property
    def tokenizer(self):
        return BlenderbotTokenizer.from_pretrained(self.ckpt)

    @slow
    def test_generation_from_short_input_same_as_parlai_3B(self):
302
303
304
        FASTER_GEN_KWARGS = dict(num_beams=1, early_stopping=True, min_length=15, max_length=25)
        TOK_DECODE_KW = dict(skip_special_tokens=True, clean_up_tokenization_spaces=True)

305
306
        torch.cuda.empty_cache()
        model = BlenderbotForConditionalGeneration.from_pretrained(self.ckpt).half().to(torch_device)
Sam Shleifer's avatar
Sam Shleifer committed
307
308
309

        src_text = ["Sam"]
        model_inputs = self.tokenizer(src_text, return_tensors="pt").to(torch_device)
310

311
        generated_utterances = model.generate(**model_inputs, **FASTER_GEN_KWARGS)
Sam Shleifer's avatar
Sam Shleifer committed
312
313
314
315
316
        tgt_text = 'Sam is a great name. It means "sun" in Gaelic.'

        generated_txt = self.tokenizer.batch_decode(generated_utterances, **TOK_DECODE_KW)
        assert generated_txt[0].strip() == tgt_text

Sylvain Gugger's avatar
Sylvain Gugger committed
317
318
319
320
        src_text = (
            "Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel"
            " like i'm going to throw up.\nand why is that?"
        )
Sam Shleifer's avatar
Sam Shleifer committed
321
322

        model_inputs = self.tokenizer([src_text], return_tensors="pt").to(torch_device)
323

324
        generated_ids = model.generate(**model_inputs, **FASTER_GEN_KWARGS)[0]
Sam Shleifer's avatar
Sam Shleifer committed
325
326
327
        reply = self.tokenizer.decode(generated_ids, **TOK_DECODE_KW)

        assert "I think it's because we are so worried about what people think of us." == reply.strip()
328
        del model
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350


class BlenderbotStandaloneDecoderModelTester:
    def __init__(
        self,
        parent,
        vocab_size=99,
        batch_size=13,
        d_model=16,
        decoder_seq_length=7,
        is_training=True,
        is_decoder=True,
        use_attention_mask=True,
        use_cache=False,
        use_labels=True,
        decoder_start_token_id=2,
        decoder_ffn_dim=32,
        decoder_layers=4,
        encoder_attention_heads=4,
        decoder_attention_heads=4,
        max_position_embeddings=30,
        is_encoder_decoder=False,
351
        encoder_no_repeat_ngram_size=0,
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
        pad_token_id=0,
        bos_token_id=1,
        eos_token_id=2,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.decoder_seq_length = decoder_seq_length
        # For common tests
        self.seq_length = self.decoder_seq_length
        self.is_training = is_training
        self.use_attention_mask = use_attention_mask
        self.use_labels = use_labels

        self.vocab_size = vocab_size
        self.d_model = d_model
        self.hidden_size = d_model
        self.num_hidden_layers = decoder_layers
        self.decoder_layers = decoder_layers
        self.decoder_ffn_dim = decoder_ffn_dim
        self.encoder_attention_heads = encoder_attention_heads
        self.decoder_attention_heads = decoder_attention_heads
        self.num_attention_heads = decoder_attention_heads
        self.eos_token_id = eos_token_id
        self.bos_token_id = bos_token_id
        self.pad_token_id = pad_token_id
        self.decoder_start_token_id = decoder_start_token_id
        self.use_cache = use_cache
        self.max_position_embeddings = max_position_embeddings
        self.is_encoder_decoder = is_encoder_decoder
382
        self.encoder_no_repeat_ngram_size = encoder_no_repeat_ngram_size
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413

        self.scope = None
        self.decoder_key_length = decoder_seq_length
        self.base_model_out_len = 2
        self.decoder_attention_idx = 1

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)

        attention_mask = None
        if self.use_attention_mask:
            attention_mask = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2)

        lm_labels = None
        if self.use_labels:
            lm_labels = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)

        config = BlenderbotConfig(
            vocab_size=self.vocab_size,
            d_model=self.d_model,
            decoder_layers=self.decoder_layers,
            decoder_ffn_dim=self.decoder_ffn_dim,
            encoder_attention_heads=self.encoder_attention_heads,
            decoder_attention_heads=self.decoder_attention_heads,
            eos_token_id=self.eos_token_id,
            bos_token_id=self.bos_token_id,
            use_cache=self.use_cache,
            pad_token_id=self.pad_token_id,
            decoder_start_token_id=self.decoder_start_token_id,
            max_position_embeddings=self.max_position_embeddings,
            is_encoder_decoder=self.is_encoder_decoder,
414
            encoder_no_repeat_ngram_size=self.encoder_no_repeat_ngram_size,
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
        )

        return (
            config,
            input_ids,
            attention_mask,
            lm_labels,
        )

    def create_and_check_decoder_model_past(
        self,
        config,
        input_ids,
        attention_mask,
        lm_labels,
    ):
        config.use_cache = True
        model = BlenderbotDecoder(config=config).to(torch_device).eval()
        # first forward pass
        outputs = model(input_ids, use_cache=True)
        outputs_use_cache_conf = model(input_ids)
        outputs_no_past = model(input_ids, use_cache=False)

        self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf))
        self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1)

        past_key_values = outputs["past_key_values"]

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)

        # append to next input_ids and
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)

        output_from_no_past = model(next_input_ids)["last_hidden_state"]
        output_from_past = model(next_tokens, past_key_values=past_key_values)["last_hidden_state"]

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()

        # test that outputs are equal for slice
        assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)

    def create_and_check_decoder_model_attention_mask_past(
        self,
        config,
        input_ids,
        attention_mask,
        lm_labels,
    ):
        model = BlenderbotDecoder(config=config).to(torch_device).eval()

        # create attention mask
        attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device)

        half_seq_length = input_ids.shape[-1] // 2
        attn_mask[:, half_seq_length:] = 0

        # first forward pass
        past_key_values = model(input_ids, attention_mask=attn_mask, use_cache=True)["past_key_values"]
        #        past_key_values = model(input_ids, use_cache=True)["past_key_values"]

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)

        # change a random masked slice from input_ids
        random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1
        random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1)
        input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens

        # append to next input_ids and attn_mask
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        attn_mask = torch.cat(
            [attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)],
            dim=1,
        )

        # get two different outputs
        output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"]
        output_from_past = model(next_tokens, past_key_values=past_key_values, attention_mask=attn_mask)[
            "last_hidden_state"
        ]

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()

        # test that outputs are equal for slice
        assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            attention_mask,
            lm_labels,
        ) = config_and_inputs

        inputs_dict = {
            "input_ids": input_ids,
            "attention_mask": attention_mask,
        }
        return config, inputs_dict


@require_torch
class BlenderbotStandaloneDecoderModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
    all_model_classes = (BlenderbotDecoder, BlenderbotForCausalLM) if is_torch_available() else ()
    all_generative_model_classes = (BlenderbotForCausalLM,) if is_torch_available() else ()
    test_pruning = False
    is_encoder_decoder = False

    def setUp(
        self,
    ):
        self.model_tester = BlenderbotStandaloneDecoderModelTester(self, is_training=False)
        self.config_tester = ConfigTester(self, config_class=BlenderbotConfig)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_decoder_model_past(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_decoder_model_past(*config_and_inputs)

    def test_decoder_model_attn_mask_past(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_decoder_model_attention_mask_past(*config_and_inputs)

    def test_retain_grad_hidden_states_attentions(self):
        # decoder cannot keep gradients
        return