modeling_test.py 12.8 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

19
import unittest
thomwolf's avatar
thomwolf committed
20
21
22
import json
import random

23
24
import torch

25
26
27
28
from pytorch_pretrained_bert import (BertConfig, BertModel, BertForMaskedLM,
                                     BertForNextSentencePrediction, BertForPreTraining,
                                     BertForQuestionAnswering, BertForSequenceClassification,
                                     BertForTokenClassification)
thomwolf's avatar
thomwolf committed
29
30


31
class BertModelTest(unittest.TestCase):
32
33
34
35
36
37
38
39
40
    class BertModelTester(object):

        def __init__(self,
                     parent,
                     batch_size=13,
                     seq_length=7,
                     is_training=True,
                     use_input_mask=True,
                     use_token_type_ids=True,
41
                     use_labels=True,
42
43
44
45
46
47
48
49
50
51
                     vocab_size=99,
                     hidden_size=32,
                     num_hidden_layers=5,
                     num_attention_heads=4,
                     intermediate_size=37,
                     hidden_act="gelu",
                     hidden_dropout_prob=0.1,
                     attention_probs_dropout_prob=0.1,
                     max_position_embeddings=512,
                     type_vocab_size=16,
52
                     type_sequence_label_size=2,
53
                     initializer_range=0.02,
54
                     num_labels=3,
55
56
57
58
59
60
61
                     scope=None):
            self.parent = parent
            self.batch_size = batch_size
            self.seq_length = seq_length
            self.is_training = is_training
            self.use_input_mask = use_input_mask
            self.use_token_type_ids = use_token_type_ids
62
            self.use_labels = use_labels
63
64
65
66
67
68
69
70
71
72
            self.vocab_size = vocab_size
            self.hidden_size = hidden_size
            self.num_hidden_layers = num_hidden_layers
            self.num_attention_heads = num_attention_heads
            self.intermediate_size = intermediate_size
            self.hidden_act = hidden_act
            self.hidden_dropout_prob = hidden_dropout_prob
            self.attention_probs_dropout_prob = attention_probs_dropout_prob
            self.max_position_embeddings = max_position_embeddings
            self.type_vocab_size = type_vocab_size
73
            self.type_sequence_label_size = type_sequence_label_size
74
            self.initializer_range = initializer_range
75
            self.num_labels = num_labels
76
77
            self.scope = scope

78
        def prepare_config_and_inputs(self):
79
            input_ids = BertModelTest.ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
80
81
82

            input_mask = None
            if self.use_input_mask:
83
                input_mask = BertModelTest.ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
84
85
86

            token_type_ids = None
            if self.use_token_type_ids:
87
                token_type_ids = BertModelTest.ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
88

89
90
91
92
93
94
            sequence_labels = None
            token_labels = None
            if self.use_labels:
                sequence_labels = BertModelTest.ids_tensor([self.batch_size], self.type_sequence_label_size)
                token_labels = BertModelTest.ids_tensor([self.batch_size, self.seq_length], self.num_labels)

thomwolf's avatar
thomwolf committed
95
96
            config = BertConfig(
                vocab_size_or_config_json_file=self.vocab_size,
97
98
99
100
101
102
103
104
105
106
107
                hidden_size=self.hidden_size,
                num_hidden_layers=self.num_hidden_layers,
                num_attention_heads=self.num_attention_heads,
                intermediate_size=self.intermediate_size,
                hidden_act=self.hidden_act,
                hidden_dropout_prob=self.hidden_dropout_prob,
                attention_probs_dropout_prob=self.attention_probs_dropout_prob,
                max_position_embeddings=self.max_position_embeddings,
                type_vocab_size=self.type_vocab_size,
                initializer_range=self.initializer_range)

108
            return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels
109

110
111
112
113
        def check_loss_output(self, result):
            self.parent.assertListEqual(
                list(result["loss"].size()),
                [])
114

115
116
117
        def create_bert_model(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels):
            model = BertModel(config=config)
            all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
118
            outputs = {
119
120
121
                "sequence_output": all_encoder_layers[-1],
                "pooled_output": pooled_output,
                "all_encoder_layers": all_encoder_layers,
122
123
124
            }
            return outputs

125
126
127
128
        def check_bert_model_output(self, result):
            self.parent.assertListEqual(
                [size for layer in result["all_encoder_layers"] for size in layer.size()],
                [self.batch_size, self.seq_length, self.hidden_size] * self.num_hidden_layers)
129
130
            self.parent.assertListEqual(
                list(result["sequence_output"].size()),
131
                [self.batch_size, self.seq_length, self.hidden_size])
132
            self.parent.assertListEqual(list(result["pooled_output"].size()), [self.batch_size, self.hidden_size])
133

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237

        def create_bert_for_masked_lm(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels):
            model = BertForMaskedLM(config=config)
            loss = model(input_ids, token_type_ids, input_mask, token_labels)
            prediction_scores = model(input_ids, token_type_ids, input_mask)
            outputs = {
                "loss": loss,
                "prediction_scores": prediction_scores,
            }
            return outputs

        def check_bert_for_masked_lm_output(self, result):
            self.parent.assertListEqual(
                list(result["prediction_scores"].size()),
                [self.batch_size, self.seq_length, self.vocab_size])

        def create_bert_for_next_sequence_prediction(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels):
            model = BertForNextSentencePrediction(config=config)
            loss = model(input_ids, token_type_ids, input_mask, sequence_labels)
            seq_relationship_score = model(input_ids, token_type_ids, input_mask)
            outputs = {
                "loss": loss,
                "seq_relationship_score": seq_relationship_score,
            }
            return outputs

        def check_bert_for_next_sequence_prediction_output(self, result):
            self.parent.assertListEqual(
                list(result["seq_relationship_score"].size()),
                [self.batch_size, 2])


        def create_bert_for_pretraining(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels):
            model = BertForPreTraining(config=config)
            loss = model(input_ids, token_type_ids, input_mask, token_labels, sequence_labels)
            prediction_scores, seq_relationship_score = model(input_ids, token_type_ids, input_mask)
            outputs = {
                "loss": loss,
                "prediction_scores": prediction_scores,
                "seq_relationship_score": seq_relationship_score,
            }
            return outputs

        def check_bert_for_pretraining_output(self, result):
            self.parent.assertListEqual(
                list(result["prediction_scores"].size()),
                [self.batch_size, self.seq_length, self.vocab_size])
            self.parent.assertListEqual(
                list(result["seq_relationship_score"].size()),
                [self.batch_size, 2])


        def create_bert_for_question_answering(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels):
            model = BertForQuestionAnswering(config=config)
            loss = model(input_ids, token_type_ids, input_mask, sequence_labels, sequence_labels)
            start_logits, end_logits = model(input_ids, token_type_ids, input_mask)
            outputs = {
                "loss": loss,
                "start_logits": start_logits,
                "end_logits": end_logits,
            }
            return outputs

        def check_bert_for_question_answering_output(self, result):
            self.parent.assertListEqual(
                list(result["start_logits"].size()),
                [self.batch_size, self.seq_length])
            self.parent.assertListEqual(
                list(result["end_logits"].size()),
                [self.batch_size, self.seq_length])


        def create_bert_for_sequence_classification(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels):
            model = BertForSequenceClassification(config=config, num_labels=self.num_labels)
            loss = model(input_ids, token_type_ids, input_mask, sequence_labels)
            logits = model(input_ids, token_type_ids, input_mask)
            outputs = {
                "loss": loss,
                "logits": logits,
            }
            return outputs

        def check_bert_for_sequence_classification_output(self, result):
            self.parent.assertListEqual(
                list(result["logits"].size()),
                [self.batch_size, self.num_labels])


        def create_bert_for_token_classification(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels):
            model = BertForTokenClassification(config=config, num_labels=self.num_labels)
            loss = model(input_ids, token_type_ids, input_mask, token_labels)
            logits = model(input_ids, token_type_ids, input_mask)
            outputs = {
                "loss": loss,
                "logits": logits,
            }
            return outputs

        def check_bert_for_token_classification_output(self, result):
            self.parent.assertListEqual(
                list(result["logits"].size()),
                [self.batch_size, self.seq_length, self.num_labels])


238
239
240
241
    def test_default(self):
        self.run_tester(BertModelTest.BertModelTester(self))

    def test_config_to_json_string(self):
thomwolf's avatar
thomwolf committed
242
        config = BertConfig(vocab_size_or_config_json_file=99, hidden_size=37)
243
244
245
246
247
        obj = json.loads(config.to_json_string())
        self.assertEqual(obj["vocab_size"], 99)
        self.assertEqual(obj["hidden_size"], 37)

    def run_tester(self, tester):
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
        config_and_inputs = tester.prepare_config_and_inputs()
        output_result = tester.create_bert_model(*config_and_inputs)
        tester.check_bert_model_output(output_result)

        output_result = tester.create_bert_for_masked_lm(*config_and_inputs)
        tester.check_bert_for_masked_lm_output(output_result)
        tester.check_loss_output(output_result)

        output_result = tester.create_bert_for_next_sequence_prediction(*config_and_inputs)
        tester.check_bert_for_next_sequence_prediction_output(output_result)
        tester.check_loss_output(output_result)

        output_result = tester.create_bert_for_pretraining(*config_and_inputs)
        tester.check_bert_for_pretraining_output(output_result)
        tester.check_loss_output(output_result)

        output_result = tester.create_bert_for_question_answering(*config_and_inputs)
        tester.check_bert_for_question_answering_output(output_result)
        tester.check_loss_output(output_result)

        output_result = tester.create_bert_for_sequence_classification(*config_and_inputs)
        tester.check_bert_for_sequence_classification_output(output_result)
        tester.check_loss_output(output_result)

        output_result = tester.create_bert_for_token_classification(*config_and_inputs)
        tester.check_bert_for_token_classification_output(output_result)
        tester.check_loss_output(output_result)
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289

    @classmethod
    def ids_tensor(cls, shape, vocab_size, rng=None, name=None):
        """Creates a random int32 tensor of the shape within the vocab size."""
        if rng is None:
            rng = random.Random()

        total_dims = 1
        for dim in shape:
            total_dims *= dim

        values = []
        for _ in range(total_dims):
            values.append(rng.randint(0, vocab_size - 1))

thomwolf's avatar
thomwolf committed
290
        return torch.tensor(data=values, dtype=torch.long).view(shape).contiguous()
thomwolf's avatar
thomwolf committed
291
292
293


if __name__ == "__main__":
294
    unittest.main()