test_pipelines_image_to_text.py 9.08 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

17
18
import requests

19
20
from transformers import MODEL_FOR_VISION_2_SEQ_MAPPING, TF_MODEL_FOR_VISION_2_SEQ_MAPPING, is_vision_available
from transformers.pipelines import pipeline
21
22
23
24
25
26
27
28
from transformers.testing_utils import (
    is_pipeline_test,
    is_torch_available,
    require_tf,
    require_torch,
    require_vision,
    slow,
)
29

30
from .test_pipelines_common import ANY
31
32


33
34
35
36
37
38
if is_torch_available():
    from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11
else:
    is_torch_greater_or_equal_than_1_11 = False


39
40
41
42
43
44
45
46
47
48
if is_vision_available():
    from PIL import Image
else:

    class Image:
        @staticmethod
        def open(*args, **kwargs):
            pass


49
@is_pipeline_test
50
@require_vision
51
class ImageToTextPipelineTests(unittest.TestCase):
52
53
54
    model_mapping = MODEL_FOR_VISION_2_SEQ_MAPPING
    tf_model_mapping = TF_MODEL_FOR_VISION_2_SEQ_MAPPING

55
    def get_test_pipeline(self, model, tokenizer, processor):
Yih-Dar's avatar
Yih-Dar committed
56
        pipe = pipeline("image-to-text", model=model, tokenizer=tokenizer, image_processor=processor)
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
        examples = [
            Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"),
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
        ]
        return pipe, examples

    def run_pipeline_test(self, pipe, examples):
        outputs = pipe(examples)
        self.assertEqual(
            outputs,
            [
                [{"generated_text": ANY(str)}],
                [{"generated_text": ANY(str)}],
            ],
        )

    @require_tf
    def test_small_model_tf(self):
75
        pipe = pipeline("image-to-text", model="hf-internal-testing/tiny-random-vit-gpt2", framework="tf")
76
77
78
79
80
81
82
        image = "./tests/fixtures/tests_samples/COCO/000000039769.png"

        outputs = pipe(image)
        self.assertEqual(
            outputs,
            [
                {
83
                    "generated_text": "growthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthGOGO"
84
85
86
87
88
89
90
91
92
93
                },
            ],
        )

        outputs = pipe([image, image])
        self.assertEqual(
            outputs,
            [
                [
                    {
94
95
                        "generated_text": "growthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthGOGO"
                    }
96
97
98
                ],
                [
                    {
99
100
                        "generated_text": "growthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthGOGO"
                    }
101
102
103
104
                ],
            ],
        )

105
106
107
108
109
110
        outputs = pipe(image, max_new_tokens=1)
        self.assertEqual(
            outputs,
            [{"generated_text": "growth"}],
        )

111
112
    @require_torch
    def test_small_model_pt(self):
113
        pipe = pipeline("image-to-text", model="hf-internal-testing/tiny-random-vit-gpt2")
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
        image = "./tests/fixtures/tests_samples/COCO/000000039769.png"

        outputs = pipe(image)
        self.assertEqual(
            outputs,
            [
                {
                    "generated_text": "growthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthGOGO"
                },
            ],
        )

        outputs = pipe([image, image])
        self.assertEqual(
            outputs,
            [
                [
                    {
                        "generated_text": "growthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthGOGO"
                    }
                ],
                [
                    {
                        "generated_text": "growthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthGOGO"
                    }
                ],
            ],
        )

143
144
145
146
147
148
149
150
151
    @require_torch
    def test_small_model_pt_conditional(self):
        pipe = pipeline("image-to-text", model="hf-internal-testing/tiny-random-BlipForConditionalGeneration")
        image = "./tests/fixtures/tests_samples/COCO/000000039769.png"
        prompt = "a photo of"

        outputs = pipe(image, prompt=prompt)
        self.assertTrue(outputs[0]["generated_text"].startswith(prompt))

152
153
154
    @slow
    @require_torch
    def test_large_model_pt(self):
155
        pipe = pipeline("image-to-text", model="ydshieh/vit-gpt2-coco-en")
156
157
158
159
160
161
162
163
164
165
166
167
168
169
        image = "./tests/fixtures/tests_samples/COCO/000000039769.png"

        outputs = pipe(image)
        self.assertEqual(outputs, [{"generated_text": "a cat laying on a blanket next to a cat laying on a bed "}])

        outputs = pipe([image, image])
        self.assertEqual(
            outputs,
            [
                [{"generated_text": "a cat laying on a blanket next to a cat laying on a bed "}],
                [{"generated_text": "a cat laying on a blanket next to a cat laying on a bed "}],
            ],
        )

170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
    @slow
    @require_torch
    def test_generation_pt_blip(self):
        pipe = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
        url = "https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/pokemon.png"
        image = Image.open(requests.get(url, stream=True).raw)

        outputs = pipe(image)
        self.assertEqual(outputs, [{"generated_text": "a pink pokemon pokemon with a blue shirt and a blue shirt"}])

    @slow
    @require_torch
    def test_generation_pt_git(self):
        pipe = pipeline("image-to-text", model="microsoft/git-base-coco")
        url = "https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/pokemon.png"
        image = Image.open(requests.get(url, stream=True).raw)

        outputs = pipe(image)
        self.assertEqual(outputs, [{"generated_text": "a cartoon of a purple character."}])

    @slow
    @require_torch
    def test_conditional_generation_pt_blip(self):
        pipe = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
        url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg"
        image = Image.open(requests.get(url, stream=True).raw)

        prompt = "a photography of"

        outputs = pipe(image, prompt=prompt)
        self.assertEqual(outputs, [{"generated_text": "a photography of a volcano"}])

        with self.assertRaises(ValueError):
            outputs = pipe([image, image], prompt=[prompt, prompt])

    @slow
    @require_torch
    def test_conditional_generation_pt_git(self):
        pipe = pipeline("image-to-text", model="microsoft/git-base-coco")
        url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg"
        image = Image.open(requests.get(url, stream=True).raw)

        prompt = "a photo of a"

        outputs = pipe(image, prompt=prompt)
        self.assertEqual(outputs, [{"generated_text": "a photo of a tent with a tent and a tent in the background."}])

        with self.assertRaises(ValueError):
            outputs = pipe([image, image], prompt=[prompt, prompt])

220
221
222
    @unittest.skipIf(
        not is_torch_greater_or_equal_than_1_11, reason="`Pix2StructImageProcessor` requires `torch>=1.11.0`."
    )
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
    @slow
    @require_torch
    def test_conditional_generation_pt_pix2struct(self):
        pipe = pipeline("image-to-text", model="google/pix2struct-ai2d-base")
        url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg"
        image = Image.open(requests.get(url, stream=True).raw)

        prompt = "What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud"

        outputs = pipe(image, prompt=prompt)
        self.assertEqual(outputs, [{"generated_text": "ash cloud"}])

        with self.assertRaises(ValueError):
            outputs = pipe([image, image], prompt=[prompt, prompt])

238
239
240
    @slow
    @require_tf
    def test_large_model_tf(self):
241
        pipe = pipeline("image-to-text", model="ydshieh/vit-gpt2-coco-en", framework="tf")
242
243
244
245
246
247
248
249
250
251
252
253
254
        image = "./tests/fixtures/tests_samples/COCO/000000039769.png"

        outputs = pipe(image)
        self.assertEqual(outputs, [{"generated_text": "a cat laying on a blanket next to a cat laying on a bed "}])

        outputs = pipe([image, image])
        self.assertEqual(
            outputs,
            [
                [{"generated_text": "a cat laying on a blanket next to a cat laying on a bed "}],
                [{"generated_text": "a cat laying on a blanket next to a cat laying on a bed "}],
            ],
        )